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ABSTRACT

The phenomenon known as aeroelastic divergence is the locus of this work. The

analyses and experiment presented here show that divergence can occur without a

structural dynamic mode losing its oscillatory nature. Aeroelastic divergence occurs

when the structural restorative capability or stiffness of a structure is overwhelmed by the

static aerodynamic moment. This static aeroelastic coupling does not require the

structural dynamic system behavior to cease, however. Aeroelastic changes in the

dynamic mode behavior are governed not only by the stiffness, but by damping and

inertial properties. The work presented here supports these fundamental assertions by

examining a simple system: a typical section airfoil with only a rotational structural

degree of freedom.

Aeroelastic stability analysis is performed in the discrete time domain. The aerodynamic,

structural dynamic, and downwash relationships are cast as time-marching equations and

combined to form aeroelastic state space equations. The discrete time eigenvalues and

eigenvectors of the coupled system are computed. This method is advantageous because

the exact roots and the degree of stability of the system are determined, within the

framework of the aerodynamic and structural dynamic representations. The discrete-time

eigenvalues are transformed into the continuous time domain to facilitate their

interpretation.

Results from the analysis have identified configurations of a simple model that exhibit

different types of dynamic mode behavior as the system encounters divergence. For the

simple configuration examined, these results indicate that low inertial properties and

elastic axis location near the center of pressure promote divergence while the dynamic

mode persists. Large inertias and large separation between elastic axis and center of

pressure promote divergence where the dynamic mode becomes a static mode.

A wind tunnel model was designed and tested to examine divergence experimentally.

The experimental results validate the analytical calculations and explicitly examine the

divergence phenomenon where the dynamic mode persists. Three configurations of the

wind tunnel model were tested. The experimental results agree very well with the

analytical predictions of subcriticai characteristics, divergence velocity and behavior of

the noncritical dynamic mode at divergence.
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INTRODUCTION

Aeroelasticity is concerned with systems in which there is substantial interaction among

the aerodynamic, inertial and structural forces of an object. The phenomenon known as

aeroelastic divergence occurs when the structural restorative capability or stiffness of a

structure is overwhelmed by the static aerodynamic moment. The static aeroelastic

coupling that produces divergence does not require the dynamic system behavior to

cease, however. Aeroelastic changes in the dynamic mode behavior are governed not

only by the stiffness, but by damping and inertial properties.

The work presented supports these assertions by examining a simple system: a typical

section airfoil with only a rotational structural degree of freedom. The analyses and

experiment to be presented show that divergence can occur without a structural dynamic

mode losing its oscillatory nature and becoming static.

The aeroelastic analysis method utilized in this study allows calculation of the

eigenvalues or modal characteristics of a system for subcriticai, critical and supercritical

systems. The primary analysis is performed in the discrete time domain. The

aerodynamic, structural dynamic, and downwash relationships are cast as time-marching

equations and combined to form aeroelastic state space equations. The discrete time

eigenvalues and eigenvectors of the coupled system are computed. The discrete-time

eigenvalues are transformed into the continuous time domain to ease interpretation. This

method is advantageous, as the exact roots and the degree of stability of the system are

determined, to the extent of the accuracy of the aerodynamic and structural dynamic

representations. The method differs from traditional aeroelastic analyses. Background

information is provided on these traditional methods, which reveals differences between
the current method and each of them. Most of the traditional analyses produce results

that are only valid for neutrally stable behavior. This limitation is often not in the

stability method itself, but rather in approximations in the aerodynamic behavior. The

current analysis method resembles the p-method to be discussed, but the fundamental

quantity, p, has been replaced by the discrete time unit delay operator, z.

The discrete-time aeroelastic eigenanalysis method was used to examine the aerodynamic

and structural parametric space of a typical section airfoil that had a single structural

degree of freedom. These results distinguished configurations where different types of

dynamic mode behavior were observed as the system encountered divergence. This

facilitated the design of an experiment which encountered divergence while the structural

dynamic mode persists.

A wind tunnel model was designed and tested to examine divergence experimentally and

validate the analytical calculations. All freedom of motion was denied to the airfoil,



exceptfor rotationabouttheelasticaxis. Allowing only the single structural degree of

freedom eliminated the complications of interpreting modal interaction effects or

participation of multiple modes in the divergence mechanism. This simplicity allowed

the focus to be precisely on the coupling of the aerodynamics with the structural pitching

motion. Three configurations of the wind tunnel model were tested to examine the

effects of a limited range of torsional stiffness and inertia. All three configurations

exhibited divergence of a static mode existing simultaneously with a dynamic mode. The

constraints imposed by the fundamental design of the model limit the potential source of

both the statically unstable mode and the measured dynamic mode. The mode that

originates as the structural dynamic pitch or torsional mode was tracked at subcritical

airspeeds. As the dynamic pressure was increased, the aeroelastic coupling changes the

damping and frequency of this tracked mode. At divergence, this mode appears as a

damped oscillatory mode. The frequency and damping of the dynamic mode are

complicated functions of the air-off system characteristics.

There are several notable examples in aeroelastic literature where this category of

behavior has been produced by analysis or noted in experiment. More notably, however,

there is a century of experimentation in which this phenomenon has not been observed.

The current work utilizes a very simple system. In extension to more complicated

systems, the phenomenon may change or simply be more difficult to observe. This

category of system behavior has not been widely predicted by analysis and generally the

dynamic mode behavior is very damped, both factors making it difficult to locate in an

experimental setting.

Knowledge of the subcritical, supercritical and noncritical mode behavior is an asset for

many reasons. Understanding the fundamental physics of a system is a good thing all by

itself, of course. However, in addition, two practical reasons to have this knowledge

come immediately to mind. Test techniques for predicting divergence onset have

included frequency tracking of dynamic modes- divergence onset being indicated by the

nearness of this frequency to zero. For configurations where divergence occurs without a

structural dynamic mode losing its oscillatory nature this technique would not alert one to

the onset of divergence. A second practical reason to understand the noncritical mode

behavior is related to control applications. As active control of aeroelastic responses

becomes more commonplace, it becomes more vital to understand the behavior of system

modes which are noncritical for the uncontrolled or open loop system. Control law

designs which are model-based rely on modal knowledge of system characteristics, not

simply stability.

The body of this paper first presents a discussion of aeroelastic analysis methods and a

historical perspective of programs which studied the divergence phenomenon. In the

background material, a discussion is presented of past research that studied divergence

mechanisms. The present analysis method and results are then presented and discussed.

These results include a discussion and examples of the parametric database that

delineates regions where the dynamic mode behavior at divergence changes. Detailed



analyticalresultsarepresentedfor oneconfigurationof thewindtunnelmodeldesign.
Theseresultsincludestabilityanalysisandstudyof theeigenvectors.Brief resultsare
presentedfor thetwo additionalwind tunnelmodelconfigurations. Analytical results are

also presented for a set of parameters which produces divergence after the structural

dynamic originated mode has become non-oscillatory. The experiment is next described.

The model design process is summarized, as well as the hardware employed. The

experimental techniques and data reduction methods are addressed. The results of the

experiment are presented for the three configurations tested. The data are presented and

discussed in the following order: determination of the divergence condition, subcritical

techniques for predicting divergence onset, system behavior at divergence, and subcritical

modal characteristics. Analytical and experimental results are then compared in terms of

the divergence dynamic pressure and modal characteristics. The body of this work

concludes with a discussion, summary of conclusions and suggestions for future
directions.



CHAPTER ONE

BACKGROUND

Aeroelasticity is concerned with problems in which there is substantial interaction among

the aerodynamic, inertial and structural forces of an object. When a body moves through

the atmosphere, or when a body is placed in a wind tunnel, aerodynamic forces act over

its surface. If the body is deformed, there is a change in the magnitude and distribution

of these surface forces. This redistribution causes additional deformations; the result is

an interactive feedback loop between aerodynamic loads and aircraft deflections.l Static

aeroelastic behavior is generally considered to be a study of the mutual interaction

between static aerodynamics and the stiffness, but not the inertia, of an elastic structure.

Background material is presented on several topics which unite in this work. Methods

which have been used to examine aeroelastic stability are discussed first. A historical

look at programs which have studied aeroelastic divergence is then presented. Focusing

on divergence by virtue of an aerodynamic-originated root, as distinct from a root of

structural origin, then follows.

Aeroelastic Stability Methods

Methods for analyzing the stability of an aeroelastic system set the foundation for the

work to be presented. The classical methods of solving for stability of the aeroelastic

equations are the p-method, the k-method and the p-k method. Each of these methods,

which go by several names, will be discussed in the following paragraphs. In the

following methods, the non-dimensional Laplace operator, or differential operator, is

denoted p. In addition to these well-established methods, the g-method will also be

briefly discussed.

The linearized equations of motion for a flexible aircraft contain unsteady aerodynamic

terms, which depend on the Mach number, M, and the reduced frequency, k. For all but

the simplest aerodynamic theories, the exact aerodynamic coefficients which are

dependent on M and k, have not been developed in the form of algebraic functions. As a

result, aerodynamic coefficients are often computed for each desired Mach number for a

set of predetermined values of reduced frequency.

i Weisshaar, Terrence B., Fundamentals of Static Aeroelasticitv; Dowell, Earl H., Edward F. Crawley,
Howard C. Curtiss Jr, David A. Peters, Robert H. Scanlan and Fernando Sisto. A Modern Course h_

Aeroelasticity; Raymond L. Bisplinghoff and Holt Ashley, Principles of Aeroelasticity

4



The k-method is also known as the V-g method or the American method of flutter

solution to determine the aeroelastic stability of a system. Many aerodynamic

formulations, such as the Doublet Lattice method, lead to aerodynamic matrices which

are only valid for harmonic motion, p=ik. Using these simple harmonic loads, and

introducing an artificial structural damping factor, complex roots are obtained from the

equations. There are several well-known disadvantages to the k-method. The complex

eigenvalues obtained do not represent the actual damping or frequency of the system

modes except for neutrally stable roots, where the damping is zero. Many solutions are

required to obtain "matched-point" flutter boundaries. For a given airspeed, several

solutions with different frequencies may occur. Information regarding non-critical

conditions and eigenvalues is only qualitative.

The p-k method, sometimes referred to as the "'British Method" or as Hassig's modified
version of the Frazer and Duncan method, attempts to improve upon the k-method by

allowing the reduced frequency to be complex. In 1971, in discussing the p-k method,

Hassig wrote, "It is generally conceded that it is desirable to formulate and solve the

flutter equation such that the solution leads to a v01ue for the rate of decay. Ideally, this

requires the formulation of the unsteady aerodynamics matrix as a function of the

complex variable p. When one wants to work with exact theoretical aerodynamics one
must work with a formulation for harmonic motion and devise approximate methods to

determine the rate of decay." The equations of motion are written in a form indicating

that the aerodynamic matrix is available only for harmonic motion. The eigenvalues of

this approximate system can be solved, producing complex roots. The aerodynamics are

then recomputed using the frequency that resulted from the eigenvalue computation. The

equations of motion in the p-k method are solved in an iterative fashion so that the

assumed value of k converges to the computed value of the imaginary part of a pre-

selected eigenvalue. The iterations are repeated, for a single mode at a time, until all the

modes have achieved convergence. There are several disadvantages to the p-k method.

While the results for the flutter condition are shown to be quite good, the eigenvalues of

damped modes are only approximate. The calculated damping is only good for low

levels of damping. Another disadvantage of the p-k method is the requirement to track

the eigenvalues of the system as the velocity or dynamic pressure is increased. For an 11-

degree of freedom system, as each mode is tracked, the equations produce n eigenvalues.

Selection of the proper root is vital to the success of the method.

The p-method is the simplest method to understand, but perhaps the most difficult to

apply. Utilizing the p-method means simply solving for the complex eigenvalues of the

governing equations. Bisplinghoff and Ashley'- comment on the process of finding

eigenvalues of an aeroelastic system to determine stability: "The system consisting of a

typical section in an airstream possesses dynamic eigenvalues. The critical (instability)
condition is defined to occur at the lowest speed ... at which the damping ratio of any

aeroelastic mode passes through zero. Mathematically they consist of values of the

complex (non-dimensional Laplace) variable, p, which cause the determinant of the

2 Raymond L. Bisplinghoff and Holt Ashley, Principles (_fAeroelasticity

5



(nondimensionalizedcoupledaeroelasticsystem)matrix to vanish. Because(the
aerodynamicvelocitypotentials)aretranscendentalfunctions(of p), thereexistsin theory
an infinity of suchroots. So,with theair included,(theaeroelasticsystem)hasan infinite
numberof degreesof freedom.... Themostlogicalwayof studyingthedynamic
aeroelasticstabilityof astructure.., couldseemto beto calculatetheroot locusof p asa
functionof airspeedandaltitude. In engineeringpractice,however,this hasnotbeenthe
customaryapproach,as... moredataareavailableonairloadsresultingfrom simple
harmonicmotion." Thep-methodavoidstheiterationprocessby usingexplicit
expressionsfor theaerodynamics.If theaerodynamicscanbeexpressedasasufficiently
simplefunctionof p, theaeroelasticequationsdefinea polynomialin p. Themain
difficulty with thep-methodlies in thederivationof appropriateaerodynamic
expressions.Thep-methodhasbeenusedwith quasi-steadyaerodynamicsrepresented
bya first orderdifferentialequation,which ignoresanyeffectof thewake. Two methods
of approximatinghigherorderaerodynamictheoriesarethePademethodby Vepa3and
theminimumstatemethodby KarpelandHoadley4. Thesemethodsapplyrational
polynomialfits to thetabularvaluesof thecomplexaerodynamiccoefficientswhich were
derivedfor oscillatorymotion. Anothermethodof approximationwasdevelopedby
Nissim5,in whichasecondordercomplexcoefficientfit is usedratherthanarational
functionapproximation.

A dampingperturbationmethod,namedtheg-method,hasrecentlybeendevelopedby
Chen6. This isageneralizationof thek-methodandthep-k method. Thebasic
assumptionis thatafirst orderTaylor seriesapproximationin gcanbedeveloped.Chen
utilizesanalyticalcontinuationto replacethederivativewith respectto gwith a
derivativewith respectto reducedfrequency.He statesthatthis substitutionis valid in
thecompletep-domainexceptalongthenegativerealaxis in subsonicflow. Theg-
methodproducesresultsthatagreewell with well-establishedmethods.His methodalso
yieldssomeresultsin whichaerodynamiclagdivergenceis illustrated. Heexplicitly
pointsout thatdampingresultsof thep-k methodarevalid for wheredampingorreduced
frequencyarezeroor wherethechange(derivative)in theaerodynamicswith respectto
reducedfrequencyis zero.

Divergence, down through the ages

New flight vehicle concepts often invigorate the study of aeroelasticity, as new types of

interactions are anticipated or observed. Examining the literature on divergence, several

3 Vepa, R., On the use ofPade Approximants to Represent Unsteady Aerodynamic Loads for Arbitrarily

Small Motions of Wings

4 Karpel, Mordechay, and Sherwood Tiffany Hoadley, Physically Weighted Approximations of Unsteady

Aerod'_'namic Forces Using the Minimum-State Method

5 Nissim, E., Flutter Anal_,sis Using a New Complex p-Method

6 Chen, P.C. A Damping Perturbation Method for Flutter Solution: The g-Method.
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programsorresearchareasstandout ashavinginspiredthestudyof aeroelastic
divergence.

Considerationof variousplanformssparkedwork in staticdivergenceattheNational
AdvisoryCommitteefor Aeronautics(NACA) in the 1940'sand 1950's. Diederichand
Budiansky7conductedanalyticalandexperimentalresearchinto sweptandtaperedwings
which resultedin chartsandapproximateformulaefor estimatingwingdivergencefor
variousconfigurations.Thiswork demonstratedamongother things,thedramatic
decreasein thedivergencespeedfor awing that wassweptforward. Theanalyticalwork
investigatingdifferentplanformswascontinuedby DiederichandFoss8,astheyproduced
ananalyticalmethodof calculatingdivergenceof wingswith variousplanformsincluding
deltawings. A summaryof theNACA analyticalefforts is providedby Diederich'_.

The 1970'sand 1980'sbroughtaresurgencein thestudyof staticaeroelasticeffects.
Advancesincompositematerialsleadto a reconsiderationof theforward-sweptwin_
concept,whichhadbeenpreviouslydismisseddueto divergence.A studyby Krone
showedclearlythat"thedetrimentaleffectof divergenceon forwardsweptairfoils canbe
successfullycontrolled. By tailoringthecompositelayerthicknessdistributionsand
orientationsadesigncanbeobtainedthat producesoptimum stiffnessandstrength
characteristics... with little fearof sufferingtheweightpenaltiesthathavepreviously
beencausedbythedivergencephenomenon."Staticaeroelasticcharacteristicsof
forwardsweptwingswereinvestigatedby manyaeroelasticians.To noteafew,
WeisshaarII discussedforward-sweptwing divergencefrom a fundamentalconcepts
point-of-view,andBlair12performedwind tunnelexperimentswhichdemonstratedthe
fundamentalrelationshipsamongsingsweep,compositefiberorientationanddivergence
speed.An experimentalstudyof thestaticaeroelasticdivergenceof forward-swept
wingswasconductedin theNASA LangleyTransonicDynamicTunnelby Rickettsand
Doggettj3. Flatplatemodelswith varyinggeometryweretested.Six subcriticalresponse
testingtechniqueswereformulatedandevaluatedattransonicspeedsfor accuracyin
predictingstaticdivergence.RickettsandDoggettconcludedthat,"in general,thestatic
methodsseemedto consistentlygive betterqualitydatathanthedynamicmethods."As
pointedoutbyDoggettandRicketts,dynamicmethodsof divergencepredictionproduce
inferior resultsto thoseproducedby staticmethods.Thecurrentwork addressesthe issue
of why this is true. Thedynamicbehavioris governednot only by thestiffness(static)
propertiesbut bytheinertialproperties.Dynamicmethodswork only if a complexmode

7 Diederich, Franklin W., and Bernhard Budiansky, Divergence of Swept Wings

Diederich, Franklin W., and Kenneth A. Foss. Static Aeroelastic Phenomena of M-, W-. and -Wings.

'_ Diederich, Franklin W., Divergence of Delta and Swept Surfaces in the Transonic and Supelwonic Speed

Ranges

tc_Kronc, Norris J., Jr., Divergence Elimination with Advanced Composites.

_t Weisshaar, Terrencc B. Forward Swept Wing Static Aeroelasticit_'.

12 Blair. Maxwell, Wind Tunnel Experiments on the Divergence of Swept Wings with Composite Structures

i._ Rodney H. Ricketts, and Robert V. Doggett. Jr, Wind-tunnel Experiments on Divergence of Forward-

Swept Wings.



of the system becomes real. A survey article by Shirk, Hertz and Weisshaar j4 provides

an extensive reference list for other work on this subject.

Two forward swept wing airplanes were designed, built and flight tested. "Grumman

Aircraft Corporation built two X-29's. Phase 1 of the project, using aircraft No. 1, was

flown from December 1984 to 1988 and investigated handling qualities, performance,

and systems integration. Phase 2 of the X-29 program involved aircraft No. 2 and studied

the high angle of attack characteristics and military utility of the X-29. _5 ,, In the

development of the flight vehicle concept, dynamic analysis and wind tunnel testing of a

free-free configuration was performed by Miller, Wykes and Brosnan J6. Their analyses

revealed a different type of instability. The phenomenon involved a coupling between

the wing divergence mode and the aircraft short period mode, termed rigid body/wing

bending flutter. The analytical results showed that the wing response was completely

different from the cantilevered case. While the divergence of the forward swept wing

flight vehicle was controlled by aeroelastic tailoring, the coupling of the wing

divergence-prone mode and the rigid body motion was controlled by enhancement of the

stability augmentation system (SAS). One of the research objectives for the X-29 flight

test program became correlating flight data with the predicted structural stability and

determination of the aeroservoelastic stability margins. _7 In testing the X-29, methods of

divergence prediction as applied to flight tests were investigated. Schuster and Lokos

focused on applying the Southwell method to flight test data. Consideration of potential

errors lead to a more conservative pace in envelope expansion than might otherwise have

been required.

The 1990's topic in divergence centered around the National Aerospace Plane (NASP).

Researchers working on this program examined divergence of all-moveable surfaces,

which were representative of wing configurations under consideration. Experimental

data was obtained in a supersonic test conducted in the Unitary Plan Wind Tunnel at the

NASA Langley Research Center 18. The wing models had low aspect ratios and highly

swept leading edges. The wings were attached by a single-pivot mechanism along the

wing root. The supersonic divergence was predicted to be primarily dependent on the

first wing pitch mode. Two subcritical response instability prediction techniques were

used: the static Southwell method and the dynamic frequency tracking method. The

improved Southwell method uses the change in slope of load-versus-angle of attack

measurements as dynamic pressure is increased to predict divergence conditions.

Accurate predictions were not obtained for this wind tunnel model using measurements

from the strain gauge bridges on the pitch stiffness elements. The frequency of the wing

J4Shirk, M.H., T.J. Hertz. and T.B. Weisshaar. Aeroelastic Tailoring- Theoo,, Practice, and Promise.
15http://www.d frc.nasa.gov/gallery/photo/X-29
" Miller, Gerald D., John H. Wykes and Michael J. Brosnan. Rigid Body-Structural Mode Coupling on a
Forward Swept Wing Aircraft
17Sefic, Walter J., and Cleo M. Maxwell, X-29A Technology Demonstrator Flight Test Program Overview
_ Stanley R. Cole, James R. FIorance, Lee B. Thompson, Charles V. Spain and Ellen P. Bullock,
Supersonic Aeroelastic Instability Results for a NASP-like Wing Model.
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pitchmodewastrackedasthedynamicpressurewasincrementallyincreasedin thewind
tunnel,andthemodelvibrationfrequencyasit approachedzeroatthedivergence
conditionwasmonitored.Extrapolationof subcritcalmeasuredfrequencieswasthen
performed.This methodwassuccessfullyusedduring thewindtunneltestto extrapolate
divergencedynamicpressureandasguidancein anticipatingactualdivergence
instabilities.

It is interestingto notethattheexperimentaldatashowthatdivergenceoccurredat
dynamicpressuresonly 3-6percentbeyondthedynamicpressureat whichthefrequency
reachesavaluethatis fifty percentof thewind off naturalfrequency.As describedby
theauthors,thereis a largechangein frequencythat is determinedonly by observingthe
dynamicpressureof the instabilityitself. Fortwo of theMachnumbersfor thenominal
stiffnessconfiguration,thenearestsubcriticaldataindicatesthatthemodehasa
frequencythat isat 50%of its wind off value. For theothertwocases,however,thereis
subcriticaldatawhichshowthepitchmodefrequencyhasdroppedmuchfurtherjust
prior to divergence.

Non-traditional divergence

Static divergence that occurs without a structural dynamic mode losing its oscillatory

nature and becoming static is central to the current work. A very interesting body of

work on this subject exists in the literature. Studies will be discussed which were

performed by Rodden and various co-authors, Edwards, Dashcund and Martin and

Watkins. Already mentioned in the discussion of stability methods is the work of Chen,

in which aerodynamic lag divergence was also found.

From 1969 to 1994, publications by Rodden and various coauthors present analytical

results which demonstrate aerodynamic lag divergence and provide a method for

calculating the true damping of non-critical modes. In the first of these articles, Rodden

and Stahl J9 performed aeroelastic stability analysis utilizing the p-method. A transient

formulation of the flutter and divergence problems was presented using aerodynamic

strip theory and an exponential approximation (the W.P. Jones approximation) to the

Wagner function. The limitation of the method presented in the referenced work is in the

aerodynamic strip theory approximation.

A cantilevered wing with 5 structural modes was analyzed. The divergence velocity was

found and agreed very well with static calculations. Using the p-method, they

determined the subcritical frequencies and dampings. They discovered that tracking the

frequency of the mechanical modes did not produce the instability. Tracking the

aerodynamic lag roots, which are explicitly present due to the W.P. Jones approximation,

produced the divergence instability. Their results show the first mode frequency curve

decreased rapidly at speeds slightly higher than the divergence speed. The frequency

I,) William P. Rodden and Bernhard Stahl, A Strip Method for Prediction of Damping in Subsonic Wind

Tunnel and Flight Flutter Tests.
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went to zeroin a smallrangeof velocityandthenincreasedrapidly. Their resultsarealso
showthatthesubcriticaldampingvaluesdiffer significantlyfrom theartificial damping
predictedby anotherstabilityanalysismethod,exceptfor the instanceswherethemodes
behavein anearlysimpleharmonicfashion.

Additionalwork publishedby Rodden,HarderandBellinger2°comparedthep-method
resultsfrom theabovework to resultsutilizing ap-k solution. While thedivergence
velocity predictedbythetwo methodsagreed,this publicationindicatedthatthe
divergencemechanismspredicteddisagreed.The p-method indicated that the mechanism

was aerodynamic lag divergence; the p-k method predicted divergence of the first

bending mode. The matter was revisited 2j and the p-k results reinterpreted. The

transition from the bending mode to the aerodynamic lag root was then recognized,

bringing the predicted divergence mechanisms into agreement- an aerodynamic lag

divergence.

The previously cited references analyzed a cantilevered wing. This work was extended to

include a vehicle plunge mode 2-'. Applying the aerodynamic approximations and p-

method analysis technique predicted instability of an aerodynamic lag root. In the

unrestrained system the instability is oscillatory as the unstable aerodynamic mode is

coupled with the vehicle plunge freedom.

The cantilevered configuration was revisited by Rodden and Johnson in 19942_. The

subsonic Doublet-Lattice aerodynamic method was employed in a p-k solution

procedure. This analysis shows no aerodynamic lag root present in the divergence

mechanism. They commented that the first bending frequency moved smoothly to zero

frequency. They assert in this publication that the demonstrated discontinuous behavior

of the eigenvalues is not due to a physical phenomenon, but due to the change in the

definition of damping when a root becomes real. The authors do not comment in this

publication on anticipated inaccuracies due to aerodynamic modeling or inexactness of

the p-k solution for predicting subcritical characteristics.

Aerodynamic mode divergence was also illustrated in an analytical study by Edwards 24.

In this work, he discussed aerodynamic modeling in depth and notes some of the

shortcomings of different aeroelastic stability methods.

Edwards began with a solution of the linearized potential equation for the case of two-

dimensional airfoils undergoing simple harmonic motion in incompressible flow,

published by Theodorsen. He next extended the derivation to arbitrary motion or

20 William P. Rodden, R.L. Harder and E. Dean Bellinger, Aeroelastic Addition to NASTRAN.

21 William P. Rodden and E. Dean Bellinger, Aerodynamic Lag Futtctions, Divergence and the British

Flutter Method.

22 William P. Rodden and E. Dean Bellingcr, Unrestrained Aeroelastic divergence in a Dynamic Stability

Analysis.

23 William P. Rodden and Erwin H. Johnson, MSC/NASTRANAeroelastic Analysis User's Guide.

24 John E. Edwards, Unsteady AerOdynamic Modeling and Active Aeroelastic Control.
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complexvaluesof reducedfrequency.Hecalledthis thegeneralizedTheodorsen
aerodynamicrepresentation.Theexpressionsfor theaerodynamicloads,lift andpitching
moment,wereincorporatedinto typicalsectionequationsof motion. Thestability of the
aeroelasticsystemwasinvestigatedusingthep-method.The advantageof thep-method
is thattheexactrootsandthedegreeof stabilityof thesystemaredetermined,to the
extentof theaccuracyof theaerodynamicrepresentation.Edwards'presenteda
derivationandanalyticalresultswhichproduceanaerodynamicmodeatdivergence.
Thismodeproducesthemotionof thedivergingairfoil andoccursin additionto the
structuralpoles. Inherentin hiswork is therealizationthattheaerodynamicequations
arenot constantcoefficientequations.Thefundamentaltheoremof algebra25 states that

an nth order polynomial equation is guaranteed to have exactly n roots for the case of

constant coefficients. In the case of the Theodorsen aerodynamic representation, the

coefficients of the governing polynomial are not constants and as such, no guarantee as to
the number of roots can be asserted.

The occurrence of this divergence mode was studied by locating the poles of the system

in the complex plane. Both the exact system model and a Pade approximate model were

used to locate these poles. The diverence speed was indicated for the exact model by the

emergence of an additional real pole on the positive real axis. The Pade model contained

an eigenvalue which migrated from the stable negative real axis into the unstable positive

real axis. Both results produced the same value for divergence speed.

Divergence in the case of a wing instead of a typical section was investigated by

Dashcund -_6,the distinction being that his model had wing modes, not rigid pitch and

plunge degrees of freedom. In the course of performing a flutter suppression study using

active control, Dashcund discovered that for his configuration a non-structural originated

root diverged. Divergence is mainly addressed by the analytical portion of the work.

The equations of motion were generated employing a Rayleigh-Ritz energy method. The

included modes were beam bending modes and rod twisting modes. The aerodynamics

were full unsteady 2-D strip theory. Dashcund writes: "Modeling the unsteady aero in

the Laplace domain in terms of an irrational, exact representation of the generalized

Theodorson function shows the presence of additional stability roots which are not

associated with the structural modes of the system nor with the feedback compensation or

control surface actuator dynamics. The existence of these additional aerodynamic system

roots, which includes the divergence root, is confirmed by the qualitatively good

agreement between predicted and experimental divergence boundaries for the active

flutter controlled wing." These results provide an indication that aerodynamic-based

divergence can exist on wings. A recommendation presented in this work is that a

frequency tracking of all modes needs to be performed experimentally. This would show

that the still-existing structural dynamic modes are stable, while simultaneously

observing the divergent mode.

-'_Johnson, R.E, and Fred L. Kiokemeisler. Calculus
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MartinandWatkins26 present and discuss analytical and experimental data for delta

wings. The data presented is of a summary nature. Only the divergence conditions are

given; no frequency information is provided. In their discussion of the transonic test

data, however, they say, "The divergence dynamic pressures were very sharply defined

and were marked by one or two large excursions of the tip of the model just prior to

divergence .... The model motion, when divergence was reached, was quite rapid and

the deflection quickly increased until the model was bent beyond 90 degrees to the

airflow." Their comments lead to speculation regarding the nature of the divergence

mechanism that they observed.

'_' D. J. Martin and C. E. Watkins, Transonic and Supersonic Divergence Characteristics of Low-aspect-

ratio Wings and Controls.
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CHAPTER TWO

ANALYSIS

A standard procedure for solving a structural dynamic problem is to employ

eigenanalysis to calculate the structural dynamic eigenvalues and eigenmodes. Recently,

this eigenvalue/eigenmode procedure has been extended to unsteady aerodynamics, and

to coupled aeroelastic equations _.

In computational fluid dynamics, CFD, there are two approximations that are typically

employed. One is the construction of a computational grid, which determines the limits

of spatial resolution of the computational model. The second is the approximation of an

infinite fluid domain by a finite domain. It is a principal purpose of the present

discussion to demonstrate that the computational grid not only determines the spatial

resolution obtainable by the CFD model, but also the frequency or temporal resolution

that can be obtained. Also, as will be shown, the finiteness of the computational domain

determines the resolution of the eigenvalue distribution for a CFD model. Both of these

observations have important ramifications for assessing the CFD model and its ability to

provide an adequate approximation to the original fluid model on which it is founded. To

these ends, a finite-wake, time-domain, discretized vortex lattice aerodynamic model has
been utilized.

Results of aerodynamic parametric variations are presented, as well as detailed discussion

of the trends produced by these systematic variations. The discussion includes the

parametric effects on both the discrete- and continuous-time aerodynamic eigenvalues.

These studies give insights into aerodynamic modeling in the discrete time domain

including how one may construct reduced order aerodynamic models using the dominant
aerodynamic modes.

The aerodynamic model was also combined with time-domain discretized structural

dynamic equations to examine the aeroelastic behavior of a typical section. Aeroelastic

response is also discussed in terms of eigenanalysis results. Aeroelastic stability analyses

generally focus on the migration of the eigenvalues as a function of the velocity or other

flow parameter. Indeed, much flutter analysis in practice today uses at best only an

approximation to the true aeroelastic eigenvalues. Here, the true eigenvalues are found
for all aeroelastic modes without iteration. This enables an examination of the subcritical

modal characteristics of the system as well as the behavior the noncritical modes at

instability.

i Dowell, Earl H., Kenneth C. Hall, and Michael C. Romanowski, Eigenmode Analysis in Unsteady

Aerodynamics: Reduced Order Models: Hall, Kenneth C.. Eigenanalysis of Unsteady Flows about

Airfoils, Cascades and Wings.
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The eigenvalue migration is observed and the eigenvectors are investigated to determine

the relative participation of the aerodynamics and the structural dynamics.

Nondimensional parametric variations were performed to investigate the changing

character in the dynamic modes as the system diverges. Using this database,

configurations were identified and analyzed which exhibited different types of dynamic

mode behavior as the typical section became statically unstable. Specific emphasis is

paid to configurations where the dynamic mode persists at a nonzero frequency as the

system destabilizes.

The eigenvectors associated with the dynamic and divergent modes are also studied.

They provide a wealth of information and can supplant or supplement the eigenvalues in

providing stability information. They are studied from the standpoint of their own modal

content as well as their phase relationship to other eigenvectors of the system. They are

utilized to identify the relative importance of the structure and the aerodynamics in a

given aeroelastic mode's behavior.

Aerodynamic Studies

Aerodynamic Modeling

A Vortex Lattice solution to Laplace's equation for incompressible two-dimensional flow

is utilized in this study. The flow over an airfoil with a certain number of vortex
elements on the airfoil and in the wake is now considered. The airfoil is modeled as a

two-dimensional flat plate. The airfoil and the wake are divided into segments, referred

to as aerodynamic elements. Vortex lattice aerodynamics are generated by placing

vortices of strengths to be determined at points on the airfoil and in the wake.

Collocation or control points, usually located aft of the vortex locations, are points where

the boundary conditions must be satisfied. Typical placement is for the vortices to be

located at the _A-chord points of the aerodynamic elements. The collocation points are

typically placed at the 3,4-chord locations of the elements.

The governing equations are presented by Hall 2 and shown in detail in Appendix A; they

are briefly summarized here. There are 3 basic relationships, described in the following

paragraph, which are combined to form a matrix equation for the vortex strength,

Equation 1, where n and n+l denote the next and the current discrete time sample. F is a

vector of vorticities and w is a vector of downwashes at each of the collocation points.

The number of elements on the wing is denoted M, while the total number of elements is
denoted N.

[A]{r}"+'+[n]{r}"={w}"+' Equation 1

2 Hall, Kenneth C., Eigenanalysis of Unsteady Flows about Airfoils, Cascades and Wings.
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Three basic relationships determine the contents of the A and B matrices seen in Equation

I. These represent N equations with N variables. The first of the three basic

relationships equates the velocity induced by the discrete vortices at the collocation

points to the downwash caused by the airfoil's motion. This relationship accounts for M

rows within the matrices where M is the number of spatial grid points on the airfoil or

wing. Applying Kelvin's theorem generates a second basic relationship utilized in

deriving the matrix equations. Unsteady vorticity is shed into the wake; its strength is

proportional to the time rate of change of circulation about the airfoil. The time step is

taken to be equal to the time it takes the vorticity to convect from one vortex station to

the next. This relationship accounts for the (M+I) row of the matrix equations. Once the

vorticity has been shed into the wake, it is convected in the wake at the freestream

velocity. This is the third basic relationship which appears in Equation 1 as rows (M+2)

through (N- 1). Vorticity convection also provides the final, Nth, row of the matrix

equations. Because the wake is modeled with a finite length, the last vortex element must

be treated specially. "Otherwise, the starting vortex would disappear abruptly when it

reached the end of the computational wake, producing a discontinuous change in the

induced wash at the airfoil. To alleviate this difficulty .... the vorticity is allowed to

dissipate smoothly by using a relaxation factor." 2

The formulation and analysis of the aerodynamic model progresses in the following

manner. Discrete, time-marching equations are written as shown in Equation 1. Once

these equations are written, they inherently contain the approximations of the finite wake

and the discretization. A discrete Fourier transformation is performed on the untbrced

equations, producing the z-plane representation, Equation 2.

ZFO = (- A-I B _o Equation2

The discrete time eigenvalues, z, and the eigenvectors, F,,, are extracted from these

equations. These provide insight into the behavior of the aerodynamic model and also

provide a method for constructing a reduced order model. These eigenvalues are then

converted to the continuous time domain, )v-plane, through a zero order hold

transformation, Equation 3.

,A - log(z ) Equation 3
At
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BaselineConfiguration

As thefirst of severalnumericalexamples,theflow overanairfoil with 20vortex
elementson theairfoil and180elementsin thewake,equallyspaced,is nowconsidered.
This will be referredto asthebaselinecase.The(finite) lengthof thewakethusextends
9 chordlengths.Theeigenvaluesandeigenmodesof theflow canbecomputedby
establishedmethods.Becausethereare200elementsin themodel,200eigenvalues
result.

Thediscretetime (z-plane) eigenvalues, extracted from Equation 2, approximately form a

circle centered at the origin, as shown in Figure 1. In addition to these eigenvalues, there

are a finite number of eigenvalues at the origin. The number of eigenvalues at the origin

is equal to the number of segments or grid points on the wing. This conclusion follows

from examining the rank of the system matrices in equation 1, from the numerical results

obtained here, and appears to be supported by the results presented in Hall 2, though it was

not noted in this previous work. Eigenvalues at the origin in the discrete time domain

transform to _oo in the continuous time domain.
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Figure 1 Eigenvalues for baseline case; discrete time eigenvalues, z
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Thecontinuoustime eigenvaluedistributionfor thebaselinecaseis shownin Figure2.
Therealpartof theeigenvalueis indicativeof thedampingandtheimaginarypart is the
dampedfrequencyof eachfluid eigenmode.Examiningtheeigenvaluesof the
aerodynamicmatrix in thecontinuousdomainproducesseveralobservations.The
continuousdomaineigenvaluesarediscretelyspacedandarearrangedin "arms" that
emanatefrom theorigin andreachupanddownin theleft half plane. Additionally, the
realpartsof thearmsasymptoticallyapproacha limiting value.
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Figure 2 Eigenvalues for baseline case; continuous time eigenvalues, X

The presence of positive aerodynamic damping is evidenced by the arms lying in the left

half plane. The primary contribution to the damping appears to lie with the overall flow

field, however, there is additional damping due to the presence of a vorticity relaxation
factor at the last wake element. The relaxation factor used in the vortex lattice model

provides energy dissipation in the wake; as the relaxation factor is decreased, more

energy is dissipated and the aerodynamic damping increases. If the number of

aerodynamic boxes within the wake is increased, the last box will be a smaller percentage

of the total wake length and thus, the influence of the relaxation factor will be
diminished.
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Parametric Variations

Three aspects of the aerodynamic modeling significantly impact the eigenvalue

distribution: the size of the aerodynamic elements, the number of these elements that lie

in the wake, and the length of the wake. The three aerodynamic configurations, detailed

in Table 1, compared against each other two at a time, produce the three comparison

cases, which are organized in Table 2 and discussed next.

Aero Config Airfoil
No. No. of Normalized Normalized

elements element size airfoil length
I 20 1 I

(Baseline)
2 2O 1 I

3 4O i/_ I

Wake

No. of Normalized Normlized

elements element size wake length
180 I I

360 1 2

360 I/2 I

Table 1 Aerodynamic Configurations

Comparison
Case No.

Aerodynamic Configurations

Compared
1 2 3

Parametric Variation

Size of aerodynamic
elements in wake

Quantity Held Constant

Number of aerodynamic
elements in wake

1I x x Number of aerodynamic Size of aerodynamic
elements in wake elements in wake

Ill x x Size and number of Length of wake
elements in wake

Table 2 Comparison Cases for Parametric Variations

The three comparison cases are discussed in terms of their discrete time eigenvalue

distributions (z-values), their discrete-to-continuous time domain transformations (z-

transformations) and their continuous time eigenvalue distributions (X-values).

Comparison case I compares aerodynamic configurations 2 and 3, examining the effects

of varying the size of the aerodynamic elements while maintaining the number of

elements which lie in the wake. Because the number of wake elements remains fixed,

configuration #2 has a wake that is twice the length of the wake in configuration #3 and

elements which are twice as large. Although not shown, the discrete time eigenvalue

patterns for configurations 2 and 3 are identical because the number of elements in each

wake is identical. However, changing the size of the aerodynamic elements changes the

transformation, which must be applied to convert the discrete time system to continuous

time. This difference in transformation produces the change in continuous domain

eigenvalues, as illustrated in Figure 3.
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It is easily shown that the frequency of each eigenvalue scales linearly with the

aerodynamic element size. The maximum frequency of the arms can be determined a

priori by utilizing Shannon's sampling theorem. The aerodynamic eigenfrequencies are
bounded from discrete time considerations similar to those that predetermine the discrete

Fourier transform frequencies 3. The maximum frequency, o0, that can be resolved would

have 1 cycle spanning two aerodynamic panels. Using the velocity to relate the spatial

and temporal sample sizes, Equation 4, leads to maximum frequency that can be resolved,

Equation 5.

Ax
U =- Equation 4

At

]zU
max(c0)= Equation 5

Ax

"_Hardin, J.C., Introduction to Time Series Analysis.
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Thus,changingtheaerodynamicelementsizechangesthefrequenciesof the
aerodynamiceigenvalues.As thesizeof theelementsbecomesinfinitesimal,it is
speculatedthattheeigenvaluearmswill coverthefrequencyrangefrom_+oo.

It shouldbenotedin studyingCaseI thatthenumberof eigenvalueshasremained
constantin goingfrom configuration2to configuration3, while thefrequencyrafigehas
doubled. Thus,thedensityof theeigenvalueshashalved.Theimplicationsof thiswill
be furtherdiscussedin studyingCaseIII.

ComparisoncaseII comparesaerodynamicconfigurations1and2andexaminesthe
effectof varyingthenumberof aerodynamicelementsin thewakewhile holdingtheir
sizeconstant.Thenumberof aerodynamicelementsin thewakedeterminesthenumber
of discretetimeeigenvaluescomprisingthepseudo-circularpattern.As moreelements
areplacedin thewake,themorecrowdedpatternexpandsoutwardtowardstheunit circle
andthedampingof eachaerodynamicmode.As theelementsizedecreases,theradiusof
thepseudo-circularpatternasymptoticallyapproaches1.In discretetimeeigenvalue
analysis,aneigenvaluelying on theunit circlerepresentsa neutrallystablesystem.In
thecontinuoustime domain,the imaginaryaxis is the line of demarcationfor stability.It
is thusanticipatedthattheadditionalboxesin thewakeforcethe"arms"of the
continuoustimeeigenvaluescloserto theimaginaryaxis.Figure4 bearsthisout. As
moreelementsareaddedto thewake,theclosertheaerodynamicrootsget to those
associatedwith simpleharmonicmotion. Thus,changingthenumberof aerodynamic
elementsin thewakechangesthedampingof theaerodynamiceigenvalues.As the
numberof elementsgoesto infinity, it is speculatedthatthearmswill moveto the
imaginaryaxis.
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Figure 4 Case Ih Influence of varying the number of aerodynamic elements in the wake.

Continuous time eigenvalues, X

It should be noted in studying Case II, as the wake length is increased, leaving the size of

the aerodynamic elements constant, the frequency range of the continuous time

eigenvalues remains constant. The number of aerodynamic elements determines the

maximum frequency. Doubling the number of elements in the wake means doubling the

number of eigenvalues on the "arms." Twice as many eigenvalues reside in arms of the

same length. Hence, the continuous time eigenvalue distribution has become denser.

Comparison case III compares aerodynamic configurations ! and 3 and examines the

effects of varying simultaneously and in inverse proportion, the number and length of

aerodynamic elements in the wake, such that the wake length remains constant. The

expected trends for the behavior of the arms of the continuous time eigenvalues are

difficult to predict because, in going from configuration 1 to configuration 3 there are

multiple tendencies: increasing the number of elements tends to move the arms closer to

the imaginary axis; decreasing element size tends to extend the frequency range of the
arms. The combined result on the continuous time eigenvalues, shown in Figure 5, is that

the arms of the eigenvalues lie approximately the same distance from the imaginary axis,

while the frequency range of configuration 3 is twice that of configuration 1. This

corresponds to the effects of smaller element size of configuration 3. Thus, the spacing

of the eigenvalues is approximately constant between the two analysis runs.

21



8O i i i

I v Aeiodynamic Configuration , 1 1odynam_ic Conjiguration __a_

wa_

£

6O

4O

2o

0

-2o

-4O

-6o

-8o I i I I

-0.8, -0.6 -0.4 -0.2 0
Real Part

Figure 5 Case III: Influence of simultaneously varying the size and number of aerodynamic elements
in the wake, maintaining a constant wake length. Continuous time eigenvalues, _.

An approximate formula for eigenvalue spacing is derived using the frequency range and

the number of eigenvalues. The maximum frequency was found using Equation 5.

Accounting for positive and negative values, the frequency range is twice this. Dividing

this range by the number of elements or eigenvalues in the wake, and recognizing that the

element size times the number of elements in the wake is the wake length produces the

relationship given in Equation 6.

2nU
AO)- Equation 6

Lwake

The reader may recognize that this is similar to determination of the discrete Fourier

transformation frequencies, as determined by the length of the time record. The

eigenvalue spacing is approximate due to the eigenvalues not lying on the imaginary axis,

that is, due to the discretization-induced damping. For the case of the element size

becoming infinitesimally small, the formula is exact.
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Thus, the effect of the finite wake is to produce discretely spaced eigenvalues, instead of

a continuous line. As the wake length becomes infinite, it is speculated that the arms of

discretely spaced eigenvalues form continuous lines emanating from the origin.

Discussion of Aerodynamic Studies

The study of aerodynamic eigenvalues using the vortex lattice code has led to some basic

insights. The eigenvalues have been shown to be artifacts of the discretization and the

finite length wake.

The effects of discretization are controlled by two independent factors. The size of the

elements determines the range of frequencies covered by the eigenvalues, while the

number of elements in the wake drives the damping. Their effects are shown to be

independent, as one controls the transformation from discrete to continuous time, and the

other controls the discrete time eigenvalue pattern. The effect of the finite wake is to

produce discretely spaced eigenvalues, instead of a continuous line.

The following speculations regarding the limiting cases are offered. As the size of the

elements becomes infinitesimal, the eigenvalue arms will cover the frequency range from

_+oo. As the number of elements goes to infinity, the arms will move to the imaginary

axis. As the wake length becomes infinite, the arms of discretely spaced eigenvalues

form continuous lines emanating from the origin.

Aerodynamic eigenvalues have been shown to be artifacts of the discretization, which

exist regardless of the airfoil or wing motion applied to the model. The eigenvalues exist

even with no airfoil or wing motion. A direct analogy with the feedback control problem

can be drawn for aeroelastic systems. The poles of the controller exist, even when the

system is open loop. The system is open loop when the feedback path is cut. Three

scenarios produce open loop behavior: the sensor information is not provided to the

control law, the controller output is not applied to the physical system, or the control law

has a zero gain. The last case is analogous to the aeroelastic feedback scenario when the

velocity is zero. Just as the poles and zeros of the control law are independent of the

feedback gain, the poles or eigenvalues of the aerodynamic system are independent of

velocity.

It should be noted that this analogy is not be carried further because standard root locus

rules of migration for increasing gain are not directly applicable to the aeroelastic

scenario, except with the simplest aerodynamic models. The open loop aerodynamic

poles are complicated functions of the velocity, which vary with airspeed.
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A eroelastic Studies

The discrete time aerodynamic model can be coupled with a discretized structural

dynamic model to produce the following time-marching aeroelastic equations of motion,

which can then be analyzed to determine the behavior of the system. The vector q

contains the structural dynamic degrees of freedom, the vector f represents the

aerodynamic loads and the matrices, Dj and D2 describe the coupling between the

aerodynamic and structural dynamic quantities present in an aeroelastic system.

D2qn+l + Dlqn + fn+t = 0 Equation 7

The aerodynamic loads, f, can be expressed in terms of the unsteady vorticities on the

wing, F.

fn+l = C21-,n+l + cIFn Equation 8

For a system with no external disturbances, the downwash on the airfoil, w, is produced

by the motion on the airfoil.

W n = Eq n Equation 9

Combining Equation 1,7, 8, and 9 produces the aeroelastic system equations, Equation

10.

[DE C_l{q}n+l +[Ol CI n 10A Bl{qt :{:t Equation

The Typical Section

The typical section is a structural and aerodynamic idealization where the motion and the

airflow can be represented as two-dimensional. The airfoil section is considered rigid

and its permitted motion limited to vertical translation and rotation about a fixed axis.

Here, the typical section motion has been further limited to permit only rotation. The

boundary condition or mounting system is such that the structural stiffness is represented

by a torsional spring. The axis of rotation is termed the elastic axis; its position is

measured positive aft from the center of pressure. The geometric parameters are

illustrated in Figure 6. The non-dimensional parameters of interest for a single degree-of-

freedom typical section are defined in Table 3.
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Description

Torsion mode frequency

Parameter Symbol

0_L_

Relationship with

dimensional quantities

Elastic axis location e/b e/b

Mass ratio lu m/(span Pair b 2)

Radius of gyration r_

Reduced velocity V U/c%b

Table 3 Nondimensional parameters of aeroelastic system

Details of the structural dynamic equations are presented in Appendix A. They are

represented in generic notation in Equation 7. The generalized coordinate vector, q,

contains only a single degree of freedom, i.e. angle of attack, and its time derivative.

Stability Analyses

The stability of the aeroelastic system was analyzed by solving the equations of motion

for a series of reduced velocities. Eigenanalyses of the discrete time systems were

perlormed on each set of equations and the system eigenvalues tracked. The eigenvalues

were transtbrmed into the continuous time domain using a zero order hold
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transibrmation. Stability can be inferred from either the discrete or the continuous time
root locus.

A detailed look at the stability analysis for wind tunnel model configuration # 2 is

presented. The parameters used in this analysis are summarized in Table 4. This

configuration diverges while the dynamic mode that originated as the structural mode

persists.

Description Parameter Value Units
Semi-chord b 4 inches

Span

Radius of gyration

mass ratio

torsion mode frequency

Elastic axis location

Number of aerodynamic

elements on the wing

Total aerodynamic
elements

span

r{x

21

0.459

51.42

(J_c(

e/b

M

N

49.5

0.375

10

inches

radians/second

100

Density of air Pa_r 0 slinches/inch 3

Aerodynamic relaxation
factor 0.996

Size of aerodynamic Ax inches
element 0.8

Table 4 Parameter values used in analysis, wind tunnel model configuration #2

The discrete time root locus is presented in Figure 7. These z-plane plots show the

imaginary part versus the real part of the eigenvalues. The structural-dynamic-originated

mode eigenvalue and the aerodynamic-originating eigenvalues, referred to collectively as

the aeroelastic eigenvalues, migrate as the reduced velocity is increased. Figure 7

somewhat resembles the plot of the eigenvalues for the uncoupled aerodynamic equations

which was presented in Figure 1. The complex aerodynamic-originating eigenvalues

appear relatively undisturbed by the coupling with the structural dynamic equations. In

addition, the single structural dynamic eigenvalue can be seen near the unit circle,

indicating that it is more lightly damped than the aerodynamic eigenvalues. It undergoes

substantial movement with the increase in velocity.

An instability occurs when an eigenvalue lies outside the unit circle. For this system, this

is observed on the positive real axis. The axes are expanded to more closely examine the

behavior near instability, Figure 8. This figure shows the migration of the structural-

dynamic-originating eigenvalue, and also the interplay with several aerodynamic

eigenvalues. The lowest complex aerodynamic eigenvalue is clearly influenced, as well

as the real aerodynamic eigenvalues, one of which becomes unstable. It is difficult to
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further study system behavior from these graphs because each velocity produces

eigenvalues that essentially belong in different z-planes. This will be discussed in detail

in a subsequent section of this paper.
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Figure 7 Discrete time root locus for configuration # 2

27



63
EL

E
i

0.15

0.1

0.05

0

Complex
Aerodynamic
Modes

e

e

e

Increasing °

Velocity _.

Structure- *"

Originated _

e

Unit circle

0.9 0.95

Real Part

Figure 8 Discrete time root locus for configuration # 2, expanded scale

.06

The aeroelastic system is converted to the continuous domain by zero order hold
transformations. The behavior of the continuous time domain eigenvalues is shown in

Figure 9. For clarity, only the region near the origin is presented. The influence of

velocity on the aerodynamic eigenvalues is now evident. As in the aerodynamic case

previously discussed where changing the size of the aerodynamic elements changed the
transformation from the discrete to continuous time, the same effect is now observed for

the aeroelastic case as the time step size is changed. Recall that the aerodynamic

parametric studies were conducted at a fixed velocity. The aerodynamic eigenvalue
"arms" are stretched with increasing reduced velocity. As velocity increases, the

individual complex eigenvalues' frequencies increase at constant damping.
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Figure 9 Continuous time root locus for configuration #2

Increasing velocity produces a migration in the structural dynamic mode also. The

coupled mode that originates as the structural dynamic mode will be referred to here as

simply the dynamic mode of the system. This mode is a pure structural mode only at

zero airspeed. For any finite velocity, it and all other modes are strictly speaking

aeroelastic modes. The lowest reduced velocity for which this system was analyzed was

0.2. The structural dynamic mode for this nearly-zero velocity is indicated by a solid

triangle in Figure 9. The root lies at 49.5 fads/second, which agrees with the torsional
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naturalfrequency.It is helpful to simultaneously examine Figure 9 and Figure 10 when

interpreting root migration. Figure 10 shows the real and imaginary parts of each

eigenvalue plotted versus reduced velocity.
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Increasing velocity produces a larger aerodynamic feedback. This aeroelastic coupling

causes the dynamic mode frequency to decrease as velocity increases. This trend holds

true until the system becomes unstable. This configuration destabilizes as a zero

frequency root, aerodynamic in origin, migrates across the imaginary axis, that is,

divergence occurs.

The eigenvalues of the system for the divergence reduced velocity are distinguished in

Figure 9 by solid squares. It is apparent that the dynamic mode still exists with a nonzero

frequency when the system becomes unstable. At this velocity, the dynamic mode is a

coupled structural and aerodynamic mode; the modal content and resultant system

behavior will be addressed subsequently.

Attention is now turned back to the aerodynamic roots, focusing on the real axis. The

aerodynamic roots which lie on the real axis are of primary concern in the study of

divergence. Two real poles originate from the present aerodynamic model. The

existence of aerodynamic roots at zero velocity is addressed in the discussion portion of
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this paper. Forincreasingairspeed,bothroots initially becomemorestable.However,at
approximately75%of thedivergencereducedvelocity, onerootchangesdirectionand
eventuallydestabilizes.Therealpartof theeigenvalues,shownin Figure 10,is
indicativeof thedampingcharacteristics.Therealpartof aroot thatis losingdamping
will shrink. This indicatesthatenergyis notbeingdissipatedbythis modeaseffectively
asatlower velocity. Therealpartof thedynamicroot is becomingsmaller,showingthat
it is losingits ability to dissipateenergy.Oncethestaticroot destabilizes,thedynamic
root, structuralin origin,no longertendstowardsinstability.

Modal Characteristicsat Divergence:Non-dimensionalParametricVariations

Theconfigurationanalyzedaboveexhibiteddivergencewhile thedynamicmode
persisted.This behavioris predominantthroughoutmuchof theparametricspace.This
designspacewill nowbeexplored.Variationsin thestructuralnon-dimensional
parameterswereperformed.Foreachsetof parameters,theaeroelasticequationsof
motionwereconstructedandeigenvaluesfound. At thedivergencereducedvelocity,the
modalcharacteristicscanbeobserved,specificallythefrequencyanddampingof the
modewhich originatedasthestructuraldynamicmode.

A databaseof modalcharacteristicsat divergencewasgeneratedto identify regionsin the
parameterspacewherethedivergencemechanismchangesfrom beingassociatedwith
thestructuralrootversusanaerodynamicroot. Theparametervariationresultswerealso
utilized in thedesignprocessfor thewindtunnelconfigurations.Thestructuraldynamic
parametersvariedin thedatabaseareelasticaxislocation,e/b,radiusof gyration,r,_,and
massratio, !a.

Thenaturalfrequencyof thepurestructuraltorsionalmode,0,)c:_,wasalsovariedin the
initial studies.Changingc%,however,wasfoundto havenoeffecton theeigenvalue
migrationpatternasreducedvelocityvaried. Fromsteadyaerodynamicequations,it can
bereadilyobservedthato_,_hasnodirect impacton thereducedvelocity of divergence.
Thus,thenaturalfrequencyis notstudiedin theparametervariationdatabase.

Varyingthethreeparametersproducesafour-dimensionalparameterspace.Thus,the
resultscannotbeshownby asingleplot. Sampleresultsarepresentedhereasthree-
dimensionalsurfaceplots. Foreachsurface,oneof theparametersis heldat afixed
value. Threesurfacesarepresentedshowingtheratioof thedynamicmodefrequencyat
divergencenormalizedbythepuretorsionfrequency,coD,c%. Threecorresponding
surfacesfor thedampingratioatdivergence,_D,arealsopresented.

Theelasticaxispositionis fixed for thesurfacesshownin Figure l 1andFigure12.
Figure11presentsasurfaceof frequencyof thedynamicmodeatdivergence,normalized
by theair off pitch frequency.Thesurfaceshowsthevariationof thedivergence
frequencyasasimultaneousfunctionof both radiusof gyrationandmassratio. The
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presentedsurfaceis for anondimensionalelasticaxispositionof 0.375, which

corresponds to the wind tunnel model configurations. The solid square on this surface

corresponds to wind tunnel configurations 2 and 3. The circle shown on the surface

corresponds to wind tunnel model configuration #1, which has a higher radius of

gyration. Note that the two wind tunnel model configurations lie in different plateaus of

the surface. This difference will be shown to be indicative of a qualitative change in

system characteristics. This figure is one slice from the parametric variation design

space, here a four-dimensional space. As the elastic axis moves closer to the center of

pressure, the surface becomes less smooth. The ridge that is shown in the back left

corner of this parametric slice becomes a sudden hill. A trough develops in front of the

hill and an additional ridge emerges which runs from low values of mass ratio diagonally

across the space to low values of radius of gyration. The front right corner drops to a

form a plateau where the frequency ratio becomes zero, or the dynamic mode has become

real.

Figure 14 presents the companion surface showing the damping ratio at the divergence

condition. The damping information is presented as the angle between the imaginary axis

and the eigenvalue. This angle is shown in radians, with a maximum magnitude of the

angle of n/2 or 1.57 radians.
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32



5O

100

-0.5

-0.6

-0.7

-0.8

-0.9

-1

-1.1

-1.2

-1.3

-1.4

-1.5
0.5 150

1
1.5

20O2
r

C(

Figure 12 Surface of _Das a function of mass ratio and radius of gyration. Elastic axis position is
fixed, e/b=0.375.

The radius of gyration is fixed for the surfaces shown in Figure 13 and Figure 14. Figure

13 presents the surface of frequency of the dynamic mode at divergence, normalized by

the air off pitch frequency for a radius of gyration of 0.5, which roughly corresponds to

the primary wind tunnel model configuration. The surface shows the variation of the

divergence frequency as a simultaneous function of mass ratio and elastic axis position.

The solid square on this surface corresponds to wind tunnel configurations 2 and 3.

Again, this figure is one slice from the parametric variation design cube. As the radius of

gyration decreases, the surface becomes overall smoother. As the radius of gyration

increases, the trough in the middle of the mass ratio range migrates to lower values and a

new trough forms at high values. The new trough at higher mass ratios grows as radius

of gyration increases and the overall surface resembles two plateaus connected by a steep

grade. The plateau in the frequency ratio surface at high mass ratios has a value of zero,

where the dynamic mode has become real. Figure 14 presents the companion surface

showing the damping ratio at the divergence condition.
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The mass ratio is fixed for the surfaces shown in Figure 15 and Figure 16. Figure 15

presents the surface of frequency of the dynamic mode at divergence, normalized by the

air off pitch frequency for a mass ratio of 50, which roughly corresponds to the wind

tunnel model configuration 2. The surface shows the variation of the divergence

frequency as a simultaneous function of elastic axis position and radius of gyration. The

solid square on this surface corresponds to the wind tunnel configurations 2 and 3. The

rolling hills at low values of elastic axis location and the gentle slope into a single plateau

at high values of elastic axis location are characteristic throughout the range of mass ratio

considered, which was from 20 to 200. Lower values of mass ratio make the hills more

dramatic, while higher mass ratios make the valleys sink to zero. Figure 16 presents the

companion surface showing the damping ratio at the divergence condition.
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As seen in the sample parameter surfaces, there are regions where the structural dynamic

roots have become real, indicated by the frequency ratio becoming zero. These regions

indicate where the divergence mechanism will look like the traditional interpretation of

divergent behavior. This information occurs in a relatively small region of the

nondimensional parameter space, however. This region is shown in Figure 17.
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From the parametric database, many observations can be made. The surfaces of

frequency ratio and damping at divergence are neither uniform nor monotonic. However,

in general locating the elastic axis just aft of the center of pressure tends to make the

typical section diverge in a traditional manner. Large radii of gyration also produce this

effect, as do large mass ratios.

The three-dimensional parameter variations reveal that the parameter space is divided

into three distinct regions. 1) The structural dynamic root migrates to the real axis as the

reduced velocity increases. This mode diverges, as in the traditional interpretation of

divergence. 2) A real aerodynamic eigenvalue diverges. The structural dynamic mode

still exists as a complex mode at the corresponding reduced velocity. 3) A real

aerodynamic root diverges. The structural dynamic root has previously become real,

migrated further left along the real axis, becoming more damped, and then becoming

complex again prior to divergence.

The wind tunnel model configurations were designed to fall into the second category and

demonstrate divergence of a static mode whose origin lies in an aerodynamic root.

Three wind tunnel model configurations will be discussed in this paper. Analytical

stability results for what will come to be known as configuration # 2 have already been

presented. Each of these configurations diverges as a static mode which originated in the

aerodynamic model becomes unstable, while the dynamic mode with its origin in the

structural modelpersists at a non-zero frequency. The structural dynamic parameters for

all three configurations are provided in Table 5. For definitions of non-dimensional

parameters, see Table 3.

Config

# (slinch-
in 2)

(lbl-

in/deg)

.90

(rads/sec) (Hz)

rc_(

1 0. I 147 21.2 3.37 0.0046 0.741 107.9

2 0.021 0.90 49.5 7.88 0.0053 0.459 51.4

3 0.021 2.78 87.1 13.86 0.0035 0.462 50.8

Table 5 Structural dynamic parameters associated with wind tunnel model configurations

Configuration #1 has the same torsional stiffness as configuration #2, but the trailing

edge segment is made of Tungsten, which substantially increases the pitch inertia. The

eigenvalue migration is qualitatively different than that presented for configuration #2.

The root locus will be presented shortly. Configuration #3 has the same pitch inertia as

configuration #2, but the torsional stiffness was increased. The eigenvalue pattern is

identical to that of configuration #2. The change in torsional stiffness manifests itself in
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changingthedivergencedynamicpressureof thesystem,but thenon-dimensionallocus
doesnotchangeatall.

Table6 lists theanalyticalcalculationsfor divergenceconditionsfor thethree
configurations. Notethatthenon-dimensionaldivergenceconditionis invariantwith
torsionalstiffness. This is shownby theagreementof thereducedvelocityfor
configurations2 and3. Also notethatthephysicaldivergenceconditionis invariantwith
pitch inertia. This is shownby theagreementof thevelocityordynamicpressurefor
configurations1and2.

Configuration# Reduced
Velocity

Velocity

1 8.89 754
2 3.8 754
3 3.8 1324

(in/sec) (mph)
42.8

Table 6 Analytical calculation of divergence conditions

Dynamic Pressure

(psf) (N/m 2)

4.6 222

42.8 4.6 222

75 14.25 687

The divergence conditions calculated using the aeroelastic eigenanalysis can be compared

to the divergence conditions calculated using the equations of static equilibrium of the

system. The equations of static equilibrium for the single degree of freedom typical

section can be written by equating the aerodynamic and structural moments which act at

the elastic axis, Equation 11. The aerodynamic moment for a symmetric airfoil can be

expressed in terms of the lift curve slope and total angle of attack, which is comprised of

the rigid angle of attack, _, and the elastic increment, _, Equation 12. The structural

restorative moment, Equation 13, is proportional to the elastic increment. Setting them

equal and rearranging produces a ratio of elastic increment to rigid angle of attack,

Equation 14. For a finite rigidangle of attack, the elastic increment will become infinite,

diverge, if the denominator of the right hand side becomes zero. This provides the

expression in Equation 15 for calculating the divergence dynamic pressure. Recasting

the equation in non-dimensional quantities produces Equation 16.

M A = M S Equation 11

M A = qSeCLa (t_o + a e ) Equation 12

M S = Kay2 e Equation 13
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Equation 14

K_

SeC L_
Equation 15

Equation 16

The divergence conditions were calculated for the three wind tunnel model

configurations, utilizing the parameters listed in Table 5. The results, summarized in

Table 7, compare almost exactly with the analytical results shown in Table 6.

Configuration Divergence Dynamic
Pressure

(psf)
4.69

Divergence Reduced

Velocity

8.891

2 4.69 3.80

3 14.49 3.80

Table 7 Static equilibrium calculations of divergence conditions

Divergence of an eigenvalue which originates in the aerodynamic model is contrary to

the traditional interpretation of system behavior at divergence, although several similar

phenomena have been reported by earlier researchers, as discussed in the introduction

and background sections of this thesis. The modal content of the instability and the

dynamic mode are addressed in the following study of the eigenvectors which provides a

deeper insight into the observed phenomena..

Eigenvector Study

The eigenvectors of the aerodynamic and/or aeroelastic system are now examined in

detail. While it is common to examine the eigenvalues for information on system

behavior and stability characteristics, it is quite uncommon to attempt to garner insights

from the eigenvectors. As noted by Bisplinghoff and Ashley-': "(the aeroelastic

eigenvalues) have associated with them eigenfunctions when the complex representation

is used. Since (the absolute magnitude of eigenfunctions, or eigenvectors) may be
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specified arbitrarily, the mode shape is completely defined by the amplitude ratio and a

phase angle between ... degrees of freedom. This information has only minor interest in

stability studies, and modes are often not even calculated. Their variation with airspeed

can throw some light on the physical nature of (the instability), however."

Determination of the flutter mode shape is the most common use of the eigenvectors

resulting from an elastic analysis. The eigenvectors contain a wealth of information that

is only hinted at by the eigenvalues. An individual eigenvector can reveal the frequency

and damping of the associated eigenvalue. It also provides a ratio of the energy present

in the mode due to each component of the state vector. In the case of the eigenmodes

analyzed here, an eigenvector provides information on the modal content: whether a

mode should be considered as primarily structural, primarily aerodynamic or as a hybrid,

aeroelastic mode. The orthogonality or lack of orthogonality among the eigenmodes

indicates whether energy can be transferred from one mode to another. This can be

important in understanding when, how and why an aeroelastic system destabilizes.

Aerodynamic Eigenmodes

The eigenmodes of the aerodynamic system are considered first. These modes do not

change as velocity increases, but it is instructive to know what the modes look like. The

aerodynamic eigenmodes contain the modal vorticity for each aerodynamic element.

Eight of the eigenmodes are shown in Figure 18. The eigenmodes are presented for an

aerodynamic model with 10 elements on the wing and 180 elements in the wake. The

modal vorticities are plotted at the chord-wise location of the associated aerodynamic
elements.

The first mode, a real mode, resembles a static pressure coefficient distribution over the

wing, with little participation from the wake. The second mode is also a real mode

resembling a static pressure distribution over the wing. However, this mode contains a

large amount of wake participation. The remaining aerodynamic modes are complex and

are comprised primarily of an oscillating wake. The wing vorticities are insignificant

compared to those in the wake. The modes are ordered by increasing frequency. Each

mode contains a single frequency; as the frequency increases or as the mode number is
advanced more oscillations are observed in the wake.
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Figure 18 Selected aerodynamic eigenmodes

Aeroelastic Eigenvectors

The aeroelastic eigenvectors are now studied from several perspectives. The first

approach taken in examining the aeroelastic eigenvectors is to study the behavior

associated with individual modes. Following this, the relationship between two

eigenvectors is examined.

• 4
In a numerically stiff set of ordinary differential equauons, the system behavior is seen

to be dominated by the lightly damped and unstable modes. The disparity in the time

scales of components of the system allows the overall behavior to be studied by

4 Kincaid, D.R., and E. W. Chcney, Numerical Analysis." Mathematics of Scientific Computing
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observing only a few eigenmodes of the system. Thus, in this discussion of system

behavior, the modal participation factors associated with only a few modes are examined.

Three eigenvectors are considered: 1) the dynamic mode which originates as the

structural dynamic mode; 2) the least stable real mode which originates in the

aerodynamics and becomes the source of divergence and 3) the second real aerodynamic

mode. This information is repeated for reference in Table 8.

Eigenvector Numbering Real or Complex

Complex

2 Real

3 Real Aerodynamic mode

Origination

Structural dynamic mode

Aerodynamic mode

Table 8 Eigenvector numbering and description

Examination of individual eigenvectors ,

The first approach taken in examining the aeroelastic eigenvectors is to study the

behavior associated with individual modes. The eigenvector associated with a particular

eigenvalue can be viewed as the set of modal participation factors for each degree of

freedom. Note that the eigenvectors are invariant under the transformation from discrete

to continuous time domain. A proof of this is given in Appendix B. The dynamic mode

and the destabilizing static mode are examined in detail; the vorticity portion of the

eigenvectors is emphasized.

The analysis results presented here are for wind tunnel model configuration #2. The

eigenvectors have been normalized to have unity magnitude and phased such that the

structural dynamic generalized displacement coordinate, _, has zero phase.

The dynamic mode near zero velocity is considered first. The modal participation at a

low reduced velocity, V=0.225, is presented for the dynamic mode in Figure 19. At this

velocity, the mode is almost a pure structural pitch mode. The associated eigenvalue is

identified in the continuous time root locus, Figure 9, by the diamond symbol. The real

and imaginary parts of the modal participation are plotted as a functions of chord-wise or

downstream position. At this low velocity, the aerodynamics are being driven at the

frequency of the structural mode. The portion of the eigenvector associated with the

vorticity at each aerodynamic control point, referred to as the vorticity participation,

shows that most of the aerodynamic energy associated with this mode is in the wake. The

first ten participation factors correspond to elements on the airfoil. Only these vorticities

can produce forces on the airfoil. At this velocity, there is very little aerodynamic energy

being imparted to the airfoil.

44



0.2

0.15

WING WAKE

l i) [

; l
0.05 _ _ ; ,

0

-0.05

:_ -0.1

-0.15 I _ Real Part ]• imaginary Pad

-0.2 ' ' ' '
-5 0 5 10 15 20

Normalized Chordwise Location, (x/b)
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eigenvalue _. = -.16 + j 49.2

The wake portion of the vorticity participation appears as a negatively damped sinusoid

when viewed spatially. The eigenvector provides a snapshot of the vorticity distribution.

Initial examination of the data may lead one to conclude that the system is unstable. In

fact, the opposite is indicated. For a stable system, the vorticity being shed from the wing

into the wake will decrease as time advances. The vorticity on the last wake element at

time n is the same as the vorticity on the first wake element at time n-Nwake. Thus, the

spatial vorticity distribution could also be thought of as a time history, where time

originates at the wake trailing edge and proceeds towards the airfoil.

Near the divergence reduced velocity, the eigenvector associated with the dynamic mode

contains significant participation from both the structural dynamic and the aerodynamic

states. Figure 20 shows the vorticity participation spatially for a velocity just above

divergence, V= 3.85. The number of oscillations to be expected in the wake, Ncydc_, can

be estimated using the frequency of the associated eigenvalue, c0,,,,_, the reduced

velocity, V, and the number of aerodynamic discrete elements in the wake and on the

airfoil, N,vak_ and M:

OJm(_le N wake

Ncycles = (oaMTf V
Equation 17

Using the values for the divergence condition results in a prediction of 0.48 spatial

oscillations; the vorticity participation in Figure 20 is consistent with this estimate.
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Figure 20 Eigenvector associated with dynamic mode at the divergence velocity, associated

continuous time eigenvalue X = -17.7 + j 25.9

It is also instructive to view the eigenvectors in terms of the magnitude and phase angle.

The vorticity portion of the dynamic mode eigenvector is presented in this format in

Figure 21. For 5 values of reduced velocity, listed to the left of each magnitude plot, the

magnitude and phase of the eigenvector components are plotted as a function of the

chord-wise location of the aerodynamic box. The modal vorticities on the wing are

shown by the circles. The wake modal vorticities are shown by dots, which appear as

solid lines due to the dense spacing. The last element of the wake has not been shown in

these plots- it will be discussed separately.

The magnitude plots show that as the velocity is increased and approaches the divergence

speed, more modal energy is contained in the aerodynamic portion of the eigenvector.

The divergence reduced velocity for this configuration was calculated as 3.8. The

magnitude plots indicate that beyond this velocity, the wing vorticity participation

decreases. As previously discussed, the vorticities on the wing determine the importance

of the aerodynamic feedback. As velocity increases, the aeroelastic coupling in the

dynamic mode increases as evidenced by the growing magnitudes of wing vorticities.

The phase plots also provide much useful information. The dynamic mode eigenvector

can be viewed as if the aerodynamics are being forced at the modal frequency. As the

airspeed advances, the frequency of the excitation changes. As shown in the cases of the

zero airspeed and divergence, the number of cycles expected in the wake can be

approximated using Equation 17. The phase information from Figure 21 is summarized

in Table 9. The cycles in the wake are estimated and an approximate value of the

frequency is calculated. These are shown in the table to compare almost exactly with the

imaginary parts of the associated eigenvalues.
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Figure 21 Vorticity portion of dynamic mode eigenvector for several velocities, magnitude and phase
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Reduced Velocity Number of cycles
counted in the

wake

O_mod_calculated

from Equation 17

(rads/sec)

O)modcfrom

aeroelastic

eigenvalue

(rads/sec)

1 5.5 48 48.1

2 2.6 45 44.5

3 1.4 36 36.7

3.5 1.0 30 29.9

5 .56 24 24.1

Table 9 Dynamic mode frequencies estimated from wake portion of dynamic mode eigenvector and

calculated from analysis
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The aeroelastic system studied destabilizes as a real eigenvalue moves into the right half

plane. The vorticity participation factor associated with this mode resembles a pressure

coefficient distribution on the airfoil elements, while the wake contains almost no

participation except for the last element. The vorticity participation factor at an example

reduced velocity, chosen here to correspond with divergence, V= 3.85, is presented in

Figure 22. As the reduced velocity changes, it is the participation of the last wake

element is especially interesting. The magnitude and phase of this element of the

eigenvector is plotted versus reduced velocity in Figure 23. Note that these eigenvectors

have an overall magnitude of 1. Initially, nearly all of the vorticity participation resides

in the last element of the wake. As velocity increases, all of the wake elements begin to

participate in the mode. Just prior to divergence, the participation of the last wake

element drops sharply. At the divergence velocity, all of the vorticity participation is on

the airfoil; the wake factors are zero. As the system moves beyond the divergence

velocity, the behavior of "all of the vorticity participation factors change. The last wake

element quickly becomes influential again, but now with vorticity that is negative, or out

of phase, with the airlbil vorticity. As velocity is further increased, the participation of

the last wake element smoothly, asymptotically, approaches zero. Also beyond

divergence the overall wake vorticity participates.
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Figure 22 Eigenvector associated with the unstable static mode just above the divergence velocity

Transition from stability to instability produces dramatic changes in the associated

eigenvector. While the eigenvalue smoothly traverses across the imaginary axis, the

character of the vorticity participation changes sharply.
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Vorticity Ratios as Indicators of Modal Participation

Each of the modes of an aeroelastic system contains structural and aerodynamic

participation to varying degrees. This participation changes as the velocity increases and

the feedback from the aerodynamics into the structure increases. Furthermore, the

structural contributions and the aerodynamic contributions are different for different

configurations. As an indicator of the aerodynamic contribution to the dynamic mode

and the divergence mode, the modal vorticities on the wing were summed. These sums

were normalized by the summation of the wing and wake modal vorticities. This ratio

indicates the amount of aerodynamic participation in the mode.

Four configurations are examined in Figure 24. The root loci are shown in the left

column. The roots are shown which correspond to the structural dynamic mode, which

originates as a complex pair, and also the two real aerodynamic eigenvalues. The zero

airspeed values for each of the roots are shown in the plot with open triangles. As the

reduced velocity is increased towards the divergence condition, the roots of the system

are shown by the dots. The value of each root at the instability dynamic pressure is

denoted by a solid triangle. The vorticity ratios are shown in the right column. The

vorticity ratios are presented for the dynamic mode which is structural in origin, (mode

1 ), and the divergent static mode which is aerodynamic in origin, (mode 2), as functions

of reduced velocity. The area above each curve represents the energy dissipated into the

wake. The area below each curve represents the modal energy imparted to the structure.

A higher curve indicates that a larger portion of the modal energy can be attributed to the
aerodynamics.
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The first configuration is the previously analyzed wind tunnel model configuration #2.

The dynamic mode persists for this configuration at divergence. The root locus shows

the dynamic mode frequency at greater than half the natural frequency of the air off

system. This suggests that the structural influence is a dominant participant in the mode.

The vorticity ratio tells a similar story. The dynamic mode's vorticity ratio is shown by

the smaller symbols. The aerodynamic contribution to the mode is low throughout the

reduced velocity range. Thus, the dynamic mode is primarily a structural dynamic mode.

Revisiting the root locus, it can be observed that the primary contribution of the

aerodynamics to this mode is a large amount of damping. The vorticity ratio associated

with the static divergence mode is also shown. At divergence, the aerodynamic

participation is shown to increase dramatically and dominate the mode. Consideration of

the root locus and the vorticity ratio indicates that divergence for this configuration is

primarily aerodynamic.

The second configuration shown in Figure 24 corresponds to wind tunnel model

configuration #1. The frequency of the dynamic eigenvalue has decreased significantly

at divergence compared to the previous configuration. The vorticity ratio indicates that

the dynamic mode has more aerodynamic participation than the previous configuration.

The dynamic mode is still observed to have a nonzero frequency at divergence and be

primarily driven by the structural participation. The divergent mode is primarily

aerodynamic in nature.

The third configuration shown does not correlate with a constructed wind tunnel model

configuration. It is analyzed to show the progression of the aerodynamic participation in

the dynamic mode. The vorticity ratio indicates that the dynamic mode has more

aerodynamic .participation than the previous configurations.

The fourth configuration illustrates the divergence mechanism that is traditionally

envisioned. The parameters used in this example do not represent a buildable

configuration with known materials, but are presented to show that the analysis

methodology is not single-minded. This configuration was generated by modifying the

parameters associated with wind tunnel model configuration #1. The elastic axis was

moved to l/a inch aft of the center of pressure. The radius of gyration was then doubled.
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Description Parameter Value Units
Semi-chord b 4.0000 inches

Span

Radius of gyration

span

r_

21.0000

1.6034

inches

mass ratiio la 108.0000

torsion mode frequency toe, 19.6000 radians/second
Elastic axis location e/b 0.0561

MNumber of aerodynamic

elements on the wing

Total aerodynamic
elements

10.0000

180.0000N

density of air Pair 0.0000 slinches/inch L_

aerodynamic relaxation c_ 0.9960
factor

size of aerodynamc Ax 0.8000 inches
element

Table 10 Parameter Values for traditionally divergent configuration

The corresponding root locus, which is presented in the last row of Figure 24, indicates

that the structural dynamic originated mode frequency decreases with increasing reduced

velocity until they turn from a complex pair of roots into two real roots. Shortly after the

pair become real, one root becomes more highly damped and one becomes unstable. As

the reduced velocity is increased, the real aerodynamic eigenvalue migrates toward the

left, or damped condition. The structural dynamic eigenvalues migrate towards the real

axis. As they hit the axis, the complex pair of eigenvalues both become real. One of

them becomes more highly damped and the other one becomes unstable.

The non-dimensional parameters used in this last example case can be produced by

physical parameters which approach buildability only for semichord values which exceed

wind tunnel blockage guidelines. Also, there are a few additional issues regarding the

potential for successful fabrication and testing of this configuration. In locating the

elastic axis so near the center of pressure, there is very little room for error or change in

the fabrication process. The dynamic pressure of the instability is proportional to the

inverse of the distance from the center of pressure to the elastic axis. If a 1/16 inch error

exists in the location of the pivot axis, the divergence dynamic pressure would be 75% of

the anticipated value. A second consideration is the potential for a camber mode to be

induced. The airfoil is a 1/32-inch thick aluminum shell. At the trailing edge, a tungsten

mass is attached with set screws. Moving the rotational axis forward, which is required

to generate the traditional mechanism configuration, means moving the rotational axis

away from the supporting, stiffening interior spars and also giving the tungsten a longer
moment arm. These factors will make the airfoil section tend to deform in the

streamwise direction. All analyses to date have been performed assuming a rigid airfoil.

The airfoil section, however, is a closed cell. This means that it is a fairly stiff structure,

and the deformation may not be a cause for concern.
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Modal Moment Comparison

The structural and aerodynamic moments can also be calculated by using the eigenvector

information. The static structural moments corresponding to each mode were calculated

using the static moment equation, Equation 13, and the modal results for angular

displacement. The static aerodynamic modal moments are calculated in similar fashion,

employing the static aerodynamic equation, Equation 12. The results are compared in

Figure 25. In this comparison, the angle of attack component of the dynamically

determined eigenvectors was employed. For each velocity, the ratio of the aerodynamic

to static moment is a ratio of dynamic pressure to divergence dynamic pressure. This can

be shown by comparison of Equation 2 and Equation 3. Subcritically, for each mode,

the static structural modal moment is less than the aerodynamic static moment. Thus,

each mode has enough structural restorative power to counteract the effect of the

aerodynamic moment, and the modes are stable. In the supercritical case, the static

mode, labeled mode 2, indicates that the aerodynamic moment is too large for the

structure to restore the system to equilibrium. This indicates that the mode is statically

unstable, as indicated previously by the eigenvalue analysis.
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The dynamic modal moments associated with any eigenvector must have equal structural

and aerodynamic components as defined in the dynamic equations. This modal quantity

is also shown in the figure for both of the modes represented. A difference between the

static and dynamic moment is the inclusion of the oscillatory portion of the motion. For

the dynamic mode, particularly subcritically, there is a large oscillatory component. This

is illustrated by the large different between the static structural moment for mode 1 and

the dynamic moment for the same mode. Another significant difference between the

static moment results and the dynamic moment results occurs supercritically. The static

equations essentially enforce a neutral stability assumption. Because the static mode,

labeled mode 2, is unstable, there is a large difference between the static and dynamic

moments.

Orthogonality between eigenvectors

Comparisons were made between pairs of eigenvectors, employing the techniques

demonstrated by Afolabi, Pidaparti and Yang 5.

The eigenvectors identified in Table 8 were compared, two at a time by finding the phase

angle between them. Modes which are in phase, or have 0 ° separating their orientations,

will tend to feed energy into each other and potentially amplify the motion. Modes which

are out of phase, or have angles of 180 °, will tend to act against each other, canceling out

the energy and motion of each other. Orthogonal modes, generally thought to be

incapable of exchanging energy from one mode to another, would be at 90 ° to each other.

Near a modal coalescence, a loss of orthogonality could be expected to occur. The angle,

0, between the eigenvectors, _i and t_i, is computed as the inverse cosine of the

normalized inner product.

-I
Oi, j = COS

[ffi e_j
Equation 18

For complex modes, inner product is seldom real, resulting in an inability to compute the

arccosine. This difficulty is avoided by employing "realification" of the complex

eigenvectors. Realification of a complex array is a stacking of the real parts and then the

complex parts, turning a vector of length n into a vector of length 2n. For either the real

or the realified complex case, this procedure is essentially finding a weighted average of

the phase of all eigenvector components.

In analyzing the current aeroelastic system, the coordinates are not all of comparable

physical or mathematical quantities- some being structural dynamic generalized

coordinates and some being aerodynamic vorticities. This makes interpretation of the

Afolabi, Dare, Ramana M.V. Pidaparti. and Henry Y. T. Yang, Flutter Prediction Using an Eigenvector

Orientation Approach

54



results more subtle and difficult. Figure 26 shows the phase angles between the

eigenvectors as functions of reduced velocity. All components of the eigenvector were

utilized in this comparison.
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Figure 26 Angle between eigenvectors as a function of reduced velocity, using all elements of the

eigenvector

The angle between the two real modes' eigenvectors, denoted 2 and 3, is shown in the

figure with a dashed line connecting circular symbols. At low velocities, the

eigenvectors are nearly out of phase. The angle between the two real modes shows a

sudden transition initiated just prior to divergence. At the divergence velocity, the two

real eigenvectors are orthogonal; above the divergence velocity, the phase overshoots 90 °

and then asymptotically reapproaches 90 °.

The angles between the real modes and the dynamic mode are oscillatory as reduced

velocity increases. The angle between the dynamic mode and the mode, which

destabilizes is shown in the figure with a solid line connecting square symbols. The

angle between the dynamic mode and the stable aerodynamic-originated mode is

indicated by a dotted line connecting triangular symbols. For both comparisons, the

frequency of the oscillations decreases and the magnitude increases. The underlying

modeling which produces these characteristics is addressed by separately considering the

eigenvector in portions corresponding to the wake vorticity components, the wing

vorticity components and the structural dynamic generalized coordinates.

The vorticity in the wake is considered first. Details of the vorticity portions of the

dynamic mode eigenvector were previously presented for several reduced velocities,

Figure 19, Figure 20 and Figure 21. The angles between the eigenvectors were computed

as previously, except that only the subset of the eigenvector components corresponding to

vorticities in the wake were included. As before, the last wake element has been ignored.

Figure 27 shows the angles between subsets of the eigenvectors as functions of reduced

velocity. There are oscillatory patterns shown relating the phase angle of the dynamic

mode eigenvector to both real eigenvectors. As in the case which utilized all components
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of theeigenvectors,thefrequencydecreasesandthemagnitudeincreasesasreduced
velocityincreases.Fromthedetailedeigenvectorplotsof thedynamicmode,it canbe
seenthatthecyclingof thephaseis morerapidat the lowervelocities.The growing
magnitudeindicatesthesamething. Themorecyclesthatthephasegoesthrough,the
smallertheaveragephaseof thevector. For thecomparisonwith thestablereal
eigenvector(eigenvector3), thephaseanglesmoothlyoscillatesfor theentirerangeof
velocitypresented.Thephaseanglebetweenthedynamicmodeandtheunstablemode,
however,undergoesa changenearthedivergencevelocity. Theslopeof thephaseangle
curvechangessign. This is attributedto thechangein signof therealmodeeigenvector.
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Figure 27 Angle between eigenvectors as a function of reduced velocity, using wake vorticities
without last element

Lack of orthogonality serves to indicate the potential for energy being passed from one

mode into another. The wake portion of the eigenvector does not have a direct impact on

the aeroelastic feedback forces generated. To offer insight into this behavior, the wing

vorticity and structural dynamic portions of the eigenvectors are examined. Because of

the mismatch in physical quantities represented, they are considered separately.

The vorticity on the wing is examined next. The angles between the eigenvectors were

computed, as before, except that only the portions of the eigenvectors corresponding to

vorticities on the wing were included. Figure 28 shows the angles between subsets of the

eigenvectors as functions of reduced velocity. The real modes are seen to be in phase

throughout the velocity range presented. The relationships of the dynamic mode to the

real modes are nearly identical, as would be expected after examining the phasing

between the real modes. Near zero velocity, the dynamic mode is nearly orthogonal to

the real modes. This orthogonality is quickly lost as the airspeed is increased. This

indicates that the modes can not exchange energy when there is no velocity. From a

physical standpoint, this indicates that there is no aeroelastic feedback, or interaction of

the structural and aerodynamic entities, when the velocity is low. As the airspeed

increases, the angle stays relatively constant. The upslope that starts just prior to
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divergenceis attributedto redistributionof vorticity betweentherealmodes,which is
alsoindicatedby examiningtheanglebetweeneigenvectors2 and3.
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Figure 28 Angle between eigenvectors as a function of reduced velocity, using wing vorticities only

The structural dynamic generalized coordinate contributions to the eigenvectors are

examined next. The angles between the eigenvectors were computed, using only the

portions of the eigenvectors corresponding the structural portion. Figure 29 shows the

angles between subsets of the eigenvectors as functions of reduced velocity. It has been

mentioned that the eigenvectors were normalized such that the angle of attack generalized

coordinate has a phase of 0 °. This is true for each eigenvector individually examined.

The structural dynamic eigenvector segment consists of this angular displacement and the

velocity of this coordinate. For this reason, the angle between the eigenvectors, which is

a weighted average for all components of the eigenvector included in the analysis, does

not have a phase of 0.°. The angle between the real modes, indicated by the dashed line

connecting circular symbols, begins at low velocity with the eigenvectors nearly in phase.

At divergence, there is a sharp transition, which shows that they are orthogonai at

divergence, and are out of phase for velocities above divergence. The orthogonality at

divergence indicates that modal energy can not be transferred from the unstable mode

and dissipated by the stable real mode. For velocities below the divergence speed, the

modes are nearly orthogonal, indicating that little energy is transferred between modes

through the structural dynamic participation. As the velocity approaches divergence, the

angle between the dynamic mode and the unstable mode changes. The modes start to

lose their orthogonality. Just prior to divergence, the separation angle is approximately

70 °, so some structural dynamic energy can be exchanged between the modes. At

divergence, the modes are orthogonal, so no energy is exchanged between them. Beyond

divergence, the modes are tending towards being out of phase with each other, indicating

that the modal motions would oppose each other. Meanwhile, the stable real

aerodynamic mode and the dynamic mode are becoming more in phase. Coupling

between these two modes is highly likely at higher velocities. This coupling can be
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observedalsofrom theroot locusof theeigenvaluesfor velocitiesabovedivergence.The
migrationpatternof thedynamicmodeeigenvalueseenin Figure9 is clearlyinfluenced
by thepresenceof thestablerealmode.
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Figure 29 Angle between eigenvectors as a function of reduced velocity, only the structural dynandc
portion of eigenvectors used

The eigenvectors were scaled such that the angular displacement has a phase of zero. It

makes sense then, to examine the structural dynamic portion of the eigenvectors by

considering only the contribution of the angular velocity. These results are shown in

Figure 30. The phase indicates that, at divergence, the unstable mode's eigenvector

phase changes by 180 °. The dynamic mode starts orthogonal to the real modes, at 90 °.

This indicates that the dynamic mode either leads or lags the real modes of the system,

such that the modes are orthogonal. As the reduced velocity increases, the phase between

the dynamic mode and both real modes tend towards becoming in phase. At divergence,

however, the curves separate. The angle between the structural dynamic mode and the

unstable mode changes suddenly by 90 ° . The slope of the curve also changes such that it

is now increasing with increasing velocity. As velocity increases, the increasing phase

difference indicates that the modes tend towards becoming out of phase; they will no

longer interact to accentuate each other's motion. The phase difference between the

stable mode and the dynamic mode continues its migration towards 0 °, indicating that the

modes are becoming more in-phase and the will be more apt to exchange modal energy at

post-divergence velocities.
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Computational Issues for Simultaneous Solution of Aerodynamic and Structural

Equations

Transformation Compatibility

To incorporate the discrete time aerodynamic model into aeroelastic equations, the

structural dynamic model must be cast in discrete time also. The structural dynamic

equations contain first and second derivatives that could be approximated using a central

difference technique. While this is convenient and easy, this method results in a

mismatch of discrete time transformations. Central differencing produces discrete time
• 3

equations to which a first order Tustin transformation, Equation 19,

must be applied to obtain the proper continuous time results.

2 (z- 1)
-- Equation 19

At (z+l)

The Tustin transformation is equivalent to the first term in a series expansion of the zero

order hold transformation presented in equation 2. In these transformations, the sample

interval, At, establishes the relationship between the discrete time eigenvalues, z, and the

continuous time eigenvalues, _. The aerodynamic equations which were generated with a

zero order hold discretization, are solved simultaneously with the discretized structural

dynamic equations. Thus, it is desirable to have structural dynamic equations that would

also be correct when a zero order hold transformation is applied. This is easily

accomplished through standard discretization techniques 6. Accepting the mismatch in the

transformations results in a phenomenon that resembles aliasing. However, as the time

step becomes small, the zero order hold transform and the Tustin transform become

approximately equivalent.

Aliasing

The equations have been constructed in the discrete time domain. Given data at discrete

times, a transformation can be utilized to approximate the response in continuous time.

There are limitations to discrete time transformation methods; aliasing is the primary

concern3'VTo avoid aliasing, a continuous time signal must have 2 samples per period of

period of the highest frequency to be resolved. The aerodynamic equations arose from

the fundamental concept of vorticity being convected downstream at a velocity, U. The

equations are valid only if the relationship U=Ax/At is maintained• It is thus observed

6 Phillips, Charles L., and H. Troy Nagle, Jr, Digital Control System Analysis and Design.

70ppenheim, Alan V., and Ronald W. Schafer, Discrete-time Signal Processing
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that the minimum velocity, at which the system may be accurately analyzed, is set by the

spatial discretization and the maximum frequency that is important to the problem.

Another interpretation is that for fi'equency and velocity ranges of interest, the minimum

number of aerodynamic elements required to avoid aliasing can be approximated. This

can serve as a guideline in selecting the spatial discretization required for a given

problem. There are additional implications of the discrete time effects when the

aerodynamic equations are combined with the structural dynamic equations or control
laws.

Methods of Stability Analysis

The aeroelastic stability analyses, which require variation of the velocity, were performed

using a single spatial aerodynamic discretization. This was accomplished by adjusting

the temporal discretization to produce the proper velocities. There are several

complications in performing the analyses in this manner: ( 1 ) a separate transformation

rule must be applied for each velocity; and (2) interpreting the discrete time eigenvalues

is not intuitive. The aerodynamic matrices are unchanging for different velocities, but the

matrices which couple them to the structural dynamics are not. The resulting aeroelastic

eigenvalues change with each velocity. The migration of the eigenvalues in the discrete

time domain is not due solely to the velocity change, but to a combination of velocity and
sample rate change.

A brief study was conducted to look at the results when a consistent sample rate was

utilized, meaning that as the velocity changed, the spatial discretization changed. This

required constructing a new aerodynamic model at each velocity. There was negligible

effect on the continuous time eigenvalues. The discrete time eigenvalue pattern

associated with the structural dynamic mode changed significantly. It was observed,

however, that the discrete time eigenvalue pattern in this case is nearly identical to the

pattern produced when the eigenvalues from the nominal analysis method are

rediscretized using the consistent sample rate.
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CHAPTER THREE

EXPERIMENT

An aeroelastic experiment was conducted in the Duke University Engineering wind

tunnel facility. The goals of this test were to validate the analytical calculations of non-

critical mode characteristics and to explicitly examine the aerodynamic mode divergence

phenomenon. Additionally, because analyses show that the dynamic response of the

system does not indicate divergence, a secondary goal of the testing was to evaluate

different divergence onset prediction methodologies. To these ends, the simplest

applicable model that could be devised was designed, fabricated and tested.

Model Design

The model design process first required that the desirable traits of the model be

identified. Thus the non-dimensional parameter space was then examined to identify

regions of parameters which would produce the best design. Physical parameter spaces

were then examined to determine a configuration that could be built out of realistic

materials and tested in the facility available and with reasonable expectations of

instrumentation and data processing techniques.

The desirable traits that were utilized in the model design range from the patently obvious

to the sublime. It was desirable to have the model shaped like an airfoil. This is an

important limitation- the shape restricts the strength, stiffness and inertia combinations
which are achievable. It is also desirable that the model be constructed of machinable

materials. This is a limitation, particularly in terms of an upper limit on the density and a

lower limit on the strength and stiffness of available materials. It was also desired to

have a wing structure that would not introduce additional modes into the experiment.

This required that the airfoil be rigid in both the chord-wise and span-wise directions.

The facility in which a model is tested places additional limitations on the design space.

The model design must diverge at a dynamic pressure that the wind tunnel can reach. To

ease mounting and eliminate tip aerodynamic phenomena, it was desirable to have a wing

which would span the entire tunnel. To eliminate gravitational effects from the

experiment, it was desirable to mount the wing between the floor and ceiling rather than

spanning from one sidewall to the other. These two requirements fix the span. It is

desirable to avoid tunnel blockage effects. The cross-sectional area of the tunnel,

coupled with expected deflection angles of the model, sets an upper limit on the airfoil

chord length if blockage is to be avoided.
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Theaboverequirementslimit thedesignspacebeforeconsiderationof demonstratingthe
desiredphenomenonareaddressed.It is desirableto find aplacein thedesignspace
whichsatisfiesall of theaboveconstraintsandalsodemonstratesaerodynamicmode
divergence.Forclarity in identifyingthatthesystemhasdivergedwhile thedynamic
modepersists,thedesignedmodelshouldhaveahighstructuraldynamicmodefrequency
atdivergence.Low dampingof thedynamicmodeat thedivergenceconditionis also
desirable.Thelowerthedampingof this mode,themoreobviousthemodal
characteristicswill appear.Further,it is desirableto demonstrate,throughsimple
configurationchangesto themodel,differenttypesof divergentbehavior.

Thenon-dimensionalparametricvariationdatabaseof modalcharacteristicsat divergence
wasdiscussedpreviously.Thestructuraldynamicparametersvaried in thedatabaseare
elasticaxis location,e/b,radiusof gyration,re,,andmassratio,_. Thisdatabasewas
utilizedto identifyregionsin theparameterspacewherethedivergencemechanism
exhibitedaerodynamiclagdivergence.Additionally, it servedto find regionswherethe
dampingandfrequencycharacteristicsweremostdesirable.

Dimensionaldesignspaceswerealsoconstructed.Althoughnotpresentedhere,the
torsionalspringstiffness,pitch inertia,mass,semichordandelasticaxislocation
variationswereexamined.Thesevariationsallowedconsiderationof manyof the issues
associatedwith modelconstructionandtesting. Theyservedto reducethedesignspace
to ageneraldescriptionof themodel. Fundamentalcharacteristicsof theconfiguration
chosenwereaNACA 0012airfoil with achordlengthof 8 inches,manufacturedfrom
aluminumasa thin-walledclosedcell with spanwisestiffenerslocatedneartheelastic
axis. Trailingedgesegmentsmadeof differentmaterialsserveasthemechanismto
determineandreconfigurethepitch inertia.

Design-specificvariationsof physicalvariableswerethenexamined.Therewerethree
physicalquantitiesthatwerestill adjustablewithin reasonablelimits andstill producea
modelwhichcouldbemanufactured:torsionalspringstiffness,massof thetrailingedge
segment,anddistancefrom thetrailing edgesegmentto thecenterof rotation.

Thetorsionalspringstiffnesscouldbeadjusted.As notedin thenon-dimensional
parametricvariation,this producednoeffecton themigrationpatternof theeigenvalues.
Thetorsionalspringstiffnesswasusedto controlthemagnitudeof thefrequencyof the
dynanicmodeat thedivergencecondition. This is a measurementanddataprocessing
fidelity issue,notaphenomenonissue.Thelimitation on increasingthestiffnessis the
tunneldynamicpressurecapability. Increasingthe stiffnessincreasesthefrequency,but
alsothedivergenceairspeed.

Thetwo remainingdesignfreedomsweresimultaneouslyvaried; theresultsof these
variationsareshownin Figure32 andFigure33. Thesefiguresareverysimilar in shape
andmagnitudeto thesampleresultspresentedfor thenon-dimensionalparameter
databaseatafixed massratio, Figures15and 16. Figure32presentstheratioof the
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dynamic mode frequency at the divergence condition to the air-off torsional frequency.

The undulating surface is a function of elastic axis position and ratio of the trailing edge

mass to the total mass of the system. The solid square shown at the ratio of masses value

of 0.01 corresponds to the Plexiglass trailing edge configurations, configurations # 2 and

# 3. The solid symbol at the ratio of masses value of .56 represents the Tungsten trailing

edge configuration, configuration #1. From this figure, it is anticipated that the two

designed inertia configurations will produce different dynamic mode migration.
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Figure 32 Physical parameter variation results; ratio of frequency of dynamic mode at divergence to

pitch mode natural frequency

Figure 33 presents the damping of the dynamic mode at the divergence. Again, the
surface is a function of elastic axis position and ratio of the trailing edge mass to the total

mass of the system.
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Configuration Descriptions

Three configurations of the model were designed for testing. The configurations differ in

their torsional stiffness and inertial properties. These properties influence the natural or

zero-airspeed structural dynamic frequency. In addition, analyses indicated that the

subcritical migration pattern of the dynamic mode eigenvalue is strongly influenced by

the inertial properties.

Reconfiguring the model's pitch inertia was accomplished by changing the airfoil trailing

edge. This also changes the non-dimensional mass ratio. Configuration #1 employed the

Tungsten trailing edge component, while the second and third configurations employed

the Plexiglass trailing edge component. These materials were chosen to provide a large

difference in the torsional inertias, and thus an observable difference in the non-critical

mode behavior. Examining Figure 32 and Figure 33, there are solid symbols shown on

the surfaces at the ratio of masses value of .56; these are the expected frequency ratio and

damping for the Tungsten trailing edge configuration, configuration #1. The solid

squares shown in the figures at the ratio of masses value of 0.01 corresponds to the
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Plexiglass trailing edge configurations, configurations # 2 and # 3. The two inertia

designs lie on different tiers of the frequency ratio surface. At divergence, the frequency

of the tungsten configuration is expected to drop to 29% from of its air off frequency.

The frequency of the Plexiglass trailing edge configuration is expected to drop to 53% of

the air off frequency when the system destabilizes. Additionally, the dampings are

different. The analytical frequency ratios and damping at divergence for the three

configurations are given in Table 11. From this data, it is anticipated that models with

the two designed inertias will produce discernibly different dynamic mode migrations.

Config
#

maSSTrailingEdge

(air off)

COD _D

maSsTotal

1 0.56 21.2 6.2 0.29 0.51

2 0.01 49.5 26.4 0.53 0.75

3 0.01 87.3 46.4 0.53 0.75

Table l 1 Analytical frequency ratios and damping at divergence

Reconfiguring the model stiffness was accomplished by changing the torsional spring and

thus the stiffness. The first two configurations used a l-inch diameter torsional spring

with an advertised stiffness of 0.94 lbf-in/degree. The third configuration employed a 3,4-

inch spring tine with an advertised stiffness of 3.18 lbt_in/deg. The stiffnesses were

measured and will be discussed in the experimental results section.

Table 12 provides a summary of the configurations. The dimensional quantities and non-

dimensional parameters for each were previously listed in Table 5. Model configuration

#2 serves as a comparison configuration to each of the others and will be discussed in

much more detail than the other two.

Config #

2

3

Trailing
Material

Tungsten

Plexiglass

Plexiglass

Edge Segment

massTE/
/ mass Total

Torsional Spring
Diameter Stiffness

(lbf-in/deg)

0.56 1" 0.90

0.01 1" 0.90

0.01 3,4,, 2.78

Table 12 Description of wind tunnel model configurations
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Hardware

Wind Tunnel Model

The divergence assessment testbed (dat) wind tunnel model consists of a typical section

airfoil with a flexible mount system providing a single degree of freedom structural

dynamic mode. The only structural dynamic mode of this model is torsional rotation, or

angle of attack.

Airfoil Description

The airfoil section is a NACA 0012 with an 8-inch chord and a span of 21 inches. This

spans the entire test section from the floor to ceiling, as shown in Figure 34. The airfoil

is an aluminum shell, 1/32 inch thick. To ease fabrication and instrumentation it was

made in two sections that join at approximately the mid-span. The internal structure has

two spar webs running the entire span to provide bending rigidity and the designed

inertial properties. Each of the two span sections consists of internal spars and airfoil

which were cut as a single entity from a solid block of aluminum using a wire electro-

deposit-machine (EDM). The last 1.125 inches of the airfoil were fabricated separately to

provide test configurations with different inertial properties. To effect a large change in

inertia, trailing edge segments were fabricated from Plexiglass and from Tungsten. These

trailing edges could be easily changed during the test.
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Figure 34 Researcher installing wind tunnel model; airfoil shown with Plexiglass trailing edge

segment

Mount System

The mounting system for the dat model has a ceiling mechanism and a floor mechanism.

Both portions of the mount system are required for mounting the model and holding it in

place.

The ceiling mechanism, shown in Figure 35, serves three functions in addition to holding

the model in place. The torsional spring is contained in the ceiling mechanism.

Sometimes called a barrel spring or a Bendix flexure, the spring provides the stiffness

associated with the structural dynamic torsion mode. The ceiling mount also contains a

turntable which allows the rigid angle of attack to be set and changed. Mounted between
the turntable and the torsional is a balance which measures torsional strain.

Figure 35 Ceiling mechanism of mount system
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This mountsystemwasdesignedandbuilt with couplesto connectthetorsionalspringto
thebalanceandto theairfoil. Threesetsof couplerswerefabricatedsothatspringsof
varioussizescould beeasilysubstituted.This systemflexibility allowsconfiguration
changesin stiffnessduringthetest.

Thefloormountsystemservestwo functionsin additionto holdingthemodelin place.
Thefloormountmechanismis shownfrom below, lookingupat theairfoil andceiling
mountsystem,Figure36.

Figure 36 Floor mount mechanism, viewed from below

A shaft extends out of the wing through the tunnel floor and is fixed to an angular

displacement transducer. This allows the total angle of attack of the wing to be measured

including the rigid angle of attack set using the ceiling mount and the elastic increment.

Additionally, the sensor wing and pressure reference tubes pass out of the tunnel through

this mount system.

Torsional stiffness testing of springs

The torsional springs were tested to determine their stiffness constants, as well as

evaluate the range of operation and linearity. The springs were inserted into a test fixture

which measured the torsional moment and the deflection angle. Weight was applied to

the test fixture in a manner which caused one end of the spring to rotate through a

deflection angle. Th+ applied weight was increased and data acquired at each weighting

until the deflection angle stayed constant. The data set was fit with a linear equation that

minimized the error in the least squares sense. The torsional spring stiffness constant is

the slope of torsional moment versus deflection angle.

The data for the l-inch diameter spring is shown in Figure 37, along with a linear fit to

the data and the manufacturer's specifications. Several data sets were acquired for each

spring. Each data set was curve fit with and without constraining the y-intercept. Curve

fits to the data sets produced spring constants between .87 and 1.08 IN-in/degrees. After

consideration of pluck test results and inertia measurements, the value to be used in
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comparisonanalyseswassetas0.90 lbr-in/degree.Themanufacturer'sspecificationfor
this spring,0.94 lbtqn/degree,falls within thescatterof the measurementsandcurvefits.
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Figure 37 Stiffness data for l inch diameter torsional spring

The data for the ¾ -inch diameter spring is shown in Figure 38, along with a linear fit to

the data and the manufacturer's specifications. Curve fits to the data sets produced spring

constants between 2.6 and 2.8 lbr-in/degrees. The nominal value for performing

comparison analyses was set as 2.78 lbjqn/degree. The manufacturer's specification for

this spring, 3.18 lbf-in/degree, is significantly higher than the measured value. This

difference invalidated preliminary estimates of the divergence dynamic pressure.

However, the qualitative behavior of the eigenvalues were shown in the analysis to be

invariant with respect to torsional stiffness.

Based on the measured data, both springs appear to behave in a linear manner for angular

displacements below 18 degrees.
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Figure 38 Stiffness data for 3Ainch diameter torsional spring

Model Instrumentation

The wind tunnel model was instrumented with the following sensors. A Trans-tek

angular displacement transducer was mounted to the bottom shaft of the airfoil. The

measurement was made such that the total angle of attack was measured, including the

prescribed rigid contribution. A torsional moment sensor connected the angle of attack

turntable to the torsional spring coupler. This sensor served the role traditionally played

by a balance. A piezoresistive accelerometer was mounted inside the airfoil towards the

leading edge. This type of accelerometer is dc-coupled, providing static values, as well

as dynamic frequency responses. Unsteady pressure transducers were mounted at the

approximate midspan of the airfoil section. One transducer was on the leading edge.

Eight others comprise pairs of top- and bottom- mounted pairs. These eight transducers

were mounted at the 5%, 15%, 30% and 52% chord locations, respectively.

Facility Description

This test was conducted in the wind tunnel facility at Duke University. Two gust vanes

were installed vertically in the tunnel, ahead of the model. Each gust vane system
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consistsof afixed airfoil andaslottedcylinder. Theslottedcylinderswereplacedjust aft
of thegustvaneairfoils. Eachcylinderwasmountedto ashaft. Theshaftwasheldby
rotatingbearingsin theceiling andfloor. Beneaththewind tunnelfloor, theshaftswere
connectedby agearandbelt systemto amotor. Via thismotor,thecylinderswere
rotated. Voltagesuppliedto themotorgovernsthemotorspeedandthustherotational
frequencyof theslottedcylinder. Throughthis mechanism,aerodynamicforcingof the
testarticlewasachieved.

DataAcquisitionSystem

Thedatawasacquiredusingaportable,self-containedsystem.Thesignalswereinputto
signalconditioners,thetypeof whichdependson thesensor.Thesignalconditioners
sentvoltagesto aNationalInstrumentsDAQ 700cardwhichwasinsertedinto thegame
cardslot of a laptopcomputer.

TheDAQCard-700is a TypeII PCMCIAcardwith 12-bitanalogto digital conversion,t
It canacquiredatafrom 16single-endedanaloginputchannelswith a maximumsample
rateof thecardis 100kilosamplespersecond.ThecardhasDC input coupling,enabling
staticmeasurements.A FIFObuffercontainsthedataduringmultipleanalogto digital
conversionsto preventdataloss. An onboardcounter/timergeneratesthesampleinterval
clock. For thisstudy,multichannelacquisitionwith continuousscanningwasthemode
of operation,takingonereadingpersampleinterval,alwaysin thesamechannelorder,
startingwith thehighestchannelnumber.

The dataacquisitionsystemwasdrivenbyvirtual instrumentsdesignedin Labview,a
NationalInstrumentssoftwareinterfaceto theirdataacquisitionproducts.

Experimental Data Acquired

Wind tunnel test data was acquired to investigate experimentally system behavior and

validate analytical results. Specifically, data was acquired: 1) to find the divergence

dynamic pressure; 2) to examine the modal characteristics of non-critical modes, both

subcritically and at the divergence condition; 3) to examine the eigenvector behavior. A

secondary goal of acquiring and analyzing this data was to evaluate standard

experimental divergence onset prediction methods. Addressing these goals required that

several different experimental methods be employed for acquiring data.

i DAQCard-700 User's Manual: Mult(function 1/0 Board for the PCMCIA BUS
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Thefirst typeof dataacquiredwassystemresponseto turbulenceoccurringnaturallyin
thetunnel. Initial divergencetesting was performed by increasing the dynamic pressure

or velocity of the airstream. Stability or instability of the system was observed; data was

acquired. The majority of the turbulence-excited data was acquired at fixed wind tunnel

velocity. These data are referred to in this text as velocity stabilized points.

Forced response data was also acquired. One method employed to excite the system was

applying a pluck or a rap to the mount system, as shown in Figure 39. A portion of the

mount system accessible from outside the tunnel was connected to the moving portion of

the torsional spring. Applying a force to the bottom coupler was equivalent to rapping

the airfoil. Data was acquired as the model was plucked or rapped; the model response

was recorded as the motion decayed, or grew in the case of unstable systems.

Figure 39 Administering a pluck to the model

The second method of forcing the system was to employ the gust vanes, which were

described previously. While the pluck test melhod utilizes the structure to apply the

forcing function, the gust method acts through aerodynamic forces. Two types of gust

excitations were used to acquire data. The first type of excitation used was a sweep of

the frequency range of interest, starting at the high frequency end and progressing to low

frequency. The second type of excitation provided by the gust vanes was rotation of the

cylinder at a fixed frequency, dwelling at a single frequency. The latter method is
referred to in this text as the sine dwell method of excitation.

Data Processing

The measured data was utilized to glean insights into the system behavior. Examining

different system characteristics required that the data be processed in several ways.

Identifying the divergence condition was accomplished by observing the system stability

as the dynamic pressure was increased. Additionally, the divergence onset was predicted

using several methods which are classically employed in experiments. Because it is a

contention of this work that the dynamic mode persists at a nonzero frequency as the

instability is reached, it is interesting to contrast the results obtained from static and

dynamic prediction techniques. The static methods used were load monitoring, angle of
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attack ratio monitoring, and the Southwell method. The dynamic methods employed

were frequency tracking and inverse amplitude tracking.

Identifying modal characteristics was accomplished by scrutinizing the time history data.

Frequency domain analyses and the logarithmic decrement technique of determining

damping were utilized. The frequency domain analyses include analyzing the Fourier

transformations, the power spectral density functions and approximated transfer
functions.

Experimental Results

Configuration #2

The experimental data for wind tunnel model configuration # 2 is presented first.

Configuration # 2 has the 1-inch diameter torsional spring and has the Plexiglass trailing

edge. This configuration has lower torsional inertia than the Tungsten configuration,

model configuration #1, but has the same torsional stiffness. This configuration has

lower torsional stiffness than the 3,4 inch spring configuration, model configuration # 3,

but has the same torsional inertia. Thus this configuration serves as a comparison

configuration to each of the others. Results will be presented and discussed in the

following order: determination of the divergence condition, subcritical techniques for

predicting divergence onset, system behavior at divergence, and subcritical modal
characteristics.

Divergence dynamic pressure

Divergence testing was conducted by setting the zero airspeed angle of attack, oq_, which

is referred to as the rigid angle of attack, as close to zero as possible. The divergence

dynamic pressure was determined by increasing the velocity and recording data as the

system became unstable. A time history showing the divergence of this configuration is

shown in Figure 40. The dynamic pressure was being slowly increased until the angle of

attack increased dramatically and suddenly. This was declared as the divergence

dynamic pressure, 5.1 psf (244 N/m2). The time history shows that the model oscillates

about a new angle of attack position, which is not at the hard stop of the spring. It is

speculated that the airfoil has reached an angle of attack where flow has separated and

stall has occurred. This issue and the ensuing behavior of the system are further

discussed at the end of this section on experimental results.
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Figure 40 Divergence of wind tunnel model configuration #2

Divergence prediction using subcritical data

Five methods of experimentally predicting divergence onset were utilized in this work.

Three methods which examine the static properties and two dynamic response methods of

analyzing data were applied.

Static load monitoring is a fundamental method of predicting divergence. This method

depends on the monitored load becoming large as divergence is approached. The slope

of the moment versus dynamic pressure curve is the key parameter. This slope changes

dramatically in the neighborhood of divergence. In this experiment, the torsional spring

moment is the monitored load. In applying this method, data sets are acquired at several

rigid angles of attack. For each rigid angle of attack, data was recorded at regular

intervals of dynamic pressure. Data for each angle is treated as a data set. The data is

shown in Figure 42. The legend indicates the rigid angle of attack for each of the traces

in the figure.
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Two data sets were acquired for rigid angles of attack very near zero degrees as shown in

Figure 41. For these data sets, the torsional moment is very small until just before the

divergence condition is reached; the load is seen to increase dramatically at this point.

The steep slope indicates that divergence is imminent.

Data is also presented for non-zero rigid angles of attack. The terminations points of

these curves show the last dynamic pressure before the system became unstable for each

rigid angle of attack. A method for estimating these destabilizing dynamic pressures will

be presented in the discussion section. The increase in load with changing dynamic

pressure is more gradual for larger c_0. The structural moment is directly proportional to

the elastic increment in the angle of attack. Examination of the static equilibriun

equations for this system shows that the elastic increment is an amplification of c_.
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Figure 41 Strain monitoring for predicting divergence onset
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The second method of predicting the onset of divergence is examining the angle of attack

as the dynamic pressure is increased. Divergence is classically defined by the angle of

attack becoming infinitely large, or the inverse of the angle becoming zero. Figure 42

shows the inverse angles of attack data. The data has been normalized by the rigid angle;

this normalization collapses the data to a single line.
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Figure 42 Predicting divergence using angle of attack ratio

A linear fit through the experimental data produces a divergence dynamic pressure of 5

psi'. The theoretical curve, which employs the measured value of torsional stiffness

produces a divergence dynamic pressure of 4.6 psf. The experimental prediction using

this method is 9% higher than the theoretical result. The disagreement between analysis

and experiment is resolved by utilizing a measured value of lift coefficient instead of the

ideal of 2ft. Using CL_ = 5.7 1/radians produces a divergence dynamic pressure of 5.08

psf.

The two static methods used previously are combined in the Southwell method. To apply

the method, the static load is measured at fixed dynamic pressures for various rigid

angles of attack. The data at each dynamic pressure constitutes a single data set. A linear

fit is made to each data set, plotting static moment versus angle of attack. The data is

shown in this manner inFigure 43. The slope of each line is denoted, _. Divergence

occurs at the dynamic pressure which makes the slope of these data infinite.
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Figure 43 Intermediate Southwell plot

The data sets are combined into a single plot. The slope, X, is plotted versus itself,

normalized by the dynamic pressure. The slope of this line predicts the divergence

dynamic pressure. Figure 44 shows the data for this configuration, with a slope of 5.5

psf.
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Figure 44 Southwell method for predicting divergence onset

During a divergence onset test, the Southwell method is applied as the dynamic pressure

data is acquired. Figure 45 shows the prediction of the Southwell method as additional
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data is considered in the linear fit. Using only data below 2. I psf, the divergence

prediction of 5.2 is fairly close to the final divergence prediction which utilized data up to

5.2 psf.
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Figure 45 Southwell method results using increasing amounts of data

Dynamic methods were also applied to predict divergence. Divergence is classically

considered to occur as the torsional mode frequency drops to zero and then statically

destabilizes. One classical method of predicting the onset of divergence is to monitor the

torsional mode frequency migration, anticipating that it will go to zero prior to

divergence. Figure 46 shows the system frequency extracted from subcritical data as the

dynamic pressure is varied. The Fourier transformation of the angle of attack response

was computed for data generated when frequency sweeps were input to the gust vanes.

At divergence, the frequency is still greater than 3 Hz for this configuration.
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Figure 46 Frequency tracking to predict divergence

A second method that relies on the same data and analytical techniques as the frequency

tracking method. The amplitude of the system response is anticipated to become large as

divergence is encountered. Rather than utilizing the static response as was done

previously in the load monitoring method, the amplitude of the modal response is

tracked. Figure 47 shows this data. The amplitude is actually seen to decrease until the

last data point before divergence.
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Figure 47 Inverse amplitude of the power spectral density of the angle of attack response
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Extracting modal characteristics

One of the primary concerns of this study is tracking the modal characteristics of the

aeroelastic system as the dynamic pressure increases towards the divergence condition.

Identification of the torsional mode frequency and damping was accomplished by

employing different excitation, measurement and data processing techniques.

The structural damping of the system without any aerodynamic forces acting can be

determined by considering the decay of the response due to a rap or a pluck. A pluck was

applied to the model, as shown in Figure 39 and the logarithmic decrement method was

used to analyze the data.

The logarithmic decrement is a well-documented method for calculating the damping of a
system-. Applying the method is dependent upon having a time history of a decaying

response where several cycles of the decaying motion are evident. Air off pluck test data

is shown in Figure 48. The time history shows the angle of attack displacement as a

pluck is administered to the model and the motion decays. The circular symbols indicate

the values which were used in the damping calculation.
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Figure 48 Extracting logarithmic decrement data from angle of attack time history, air off data for

configuration # 2

The logarithmic decrement, 8, is calculated using Equation 20 which then produces a

damping value from Equation 21. The amplitudes of the 0 Ih and N m cycles are denoted

e Clough. Ray W., and Joseph Penzien, Dynamics of Structures,
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by a in this equation. The real part of an eigenvalue can be calculated from the damping

and the frequency, as shown in Equation 22.

,og/a ]
= _, ao

N cycles

Equation 20

( =/_4,rt.2 + d2 Equation 21

Re- -sin(_ ,

3/1 - sin2 (_)
Equation 22

Data was acquired and analyzed in this manner for subcritical dynamic pressures. Figure

49 presents the results of numerous applications of the logarithmic decrement method.

The damping and frequency information were converted to real and imaginary

components representative of a single mode. The real part is plotted as a function of the

dynamic pressure. Results from individual time histories are shown as small open

circles. The larger solid circles are the average results at each dynamic pressure. While

the damping is well defined and repeatable at low dynamic pressures, the uncertainty at

the higher dynamic pressures becomes quite significant.
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Frequency domain analysis is an important tool in identifying the modal characteristics of

a system. By performing a Fourier transformation on a set of data, dominant frequencies

of the system become evident. Damping can also be gleaned from data examined in this

manner. The frequency of the system is determined by the maximum amplitude.

Extracting the damping requires that one find the amplitude of the peak and then the

frequencies where the amplitude is reduced by a factor of "X/_, these frequencies are

referred to as the half power points. Figure 50 illustrates the quantities required to

perform these calculations. This method was applied when data across the frequency

range of concern could be obtained in a single time history, as in the case of the

frequency sweep excitations.
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Figure 50 Frequency domain representations for extracting modal parameter data

Figure 51 shows the Fourier transformation of the angle of attack data acquired at 1.52

psf for configuration # 2. This data was produced by exciting the system with a

frequency sweep signal to the gust vanes. From this plot, the maximum amplitude was

found to be 766 at a frequency of 7.3 (45.6 rads/sec). The half power points were found

to be 6.75 Hz and 7.6 Hz. The difference between these frequencies, denoted Ato, is 0.85

Hz. The damping is calculated using Equation 23, resulting in a value of _ = 0.059, or an

eigenvalue with real part -2.67.

A0J
- Equation 23

2co

This half power method was also utilized in real-time. A sine dwell excitation was sent

to the gust vanes. The frequency of the excitation was tuned until the center frequency

was determined. The amplitude was recorded and the half amplitude was determined.

The frequency was then retuned to determine the half power points. In addition to

recording these important values, time histories were recorded as the model was excited

at each of these three frequencies. When these time histories were processed, they were

found to be slightly inconsistent with the real-time determination of the half power

points. The recorded and processed data was utilized in the final computations pertinent

to the real-time half power method.
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A variation of the Fourier transformation method uses the power spectral density

function, PSD. The PSD is the normalized square of the Fourier transformation. The

normalization allows frequency data extracted from different time length and sample rate

data to be compared. Because the PSD is essentially the squared frequency content, the

half power points are assessed at the peak amplitude/2. The right side of Figure 50

illustrates the required quantities to apply this technique. It is identical in calculation to
the Fourier transform method.

This method was applied for velocities in the vicinity of divergence. Very near the

dynamic pressure at which the system destabilized, sine dwell excitations had to be used

to impart enough energy to the dynamic mode. Analysis of each time history produced a

single point on a frequency domain plot.
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Figure 51 Amplitude of Fourier transformation of angle of attack; Configuration # 2,

dynamic pressure 1.52 psf

The transfer function is another frequency domain interpretation which can be utilized to

extract modal information. A transfer function requires an input, or excitation, signal in

addition to the response signal. The actual excitation, the pressure field induced by the

gust vanes on the wing is not available. The dynamic pressure of the tunnel, however,
can be utilized in some sense as the excitation. Ewins' suggests plotting the real part of

the transfer function as a function of frequency. This is done using sine dwell data to

produce each point.

3 Ewins, D. J., Modal Testing: Theory and Practice
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The objective of the logarithmic decrement analysis and the frequency domain analyses

were to determine the subcritical modal characteristics of the system as the dynamic

pressure was increased towards divergence. The results of these techniques, applied to

configuration #2, are summarized in Figures 52, 53 and 54. The damping and frequency
information have been converted to the real and imaginary parts of an eigenvalue

assuming that they were representative of a single mode.

Figure 52 shows the real part as a function of dynamic pressure for the different methods.

This is indicative of the damping of the system. Seven sets of data are shown in the

figure. All data sets indicate that the damping of the system is mainly due to the

aerodynamics. The structural damping, indicated near zero airspeed is very small by

comparison. All methods show the modal damping increasing as the dynamic pressure

increases until divergence is reached. The individual curves are discussed below.
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Figure 52 Real part of measured modal data as functions of dynamic pressure,

Configuration # 2

The frequency sweep data was processed using the Fourier transform method. Because

the frequency sweeps did not impart enough modal energy to the model near divergence,

the results are only shown for dynamic pressures below 4.1 psf. These subcritical results

show a monotonic increase in the magnitude of the real part as dynamic pressure

increases. The data labeled as "maximum damping" corresponds to using the outside

edges of the modal peak to determine the half power frequencies. The data labeled "best

guess" corresponds to faring a curve through the scatter of the frequency data. The line
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faring is approximatelyequivalentto processinga shortertime segment,which increases
theFouriertransformfrequencyspacing. The"bestguess"producedlowestvaluesof
dampingacrossthedynamicpressurerange.Thesevalues,which weremoresubjectively
determinedthanthemaximumdampingvalues,producedmorevariability in theresults.
The"maximumdamping"interpretationof thefrequencysweepdataliesnearlyontop of
the logarithmicdecrementresults.

Thelogarithmicdecrementresults,shownin thefigureby opensquares,aretheaverage
valuesateachdynamicpressure,which wereshownin Figure49. Thelogarithmic
decrementresultsaretheonly resultsavailablefor theair off condition. Theresultsshow
very low structuraldamping;for thisconfigurationit wasmeasuredas_ = 0.0053.
Translatedintotherealpartof aneigenvaluewhosefrequencyis49.5 radians/second,
this correspondsto arealpartof-0.26. A veryorderlymarchto higherdampingis
chartedbythisdata,which isavailableonly at dynamicpressuresbelow3.6psf.

The largestdampingvalueswereobtainedby thereal-timehalf powermethod.This data
wastakenupto 4.6psf andprovidesaverysmoothtrendin thedampingvalues.

In thevicinity of divergence,thesinedwell datawasanalyzedusingthefrequency
domainmethods.Theseanalysesprovideinterestingtrends.TheFouriertransform
results,shownbyopentrianglesconnectedby asolid line, beginnearwherethe
frequencysweepdataended.Thedatacontinueto decreaseuntil adynamicpressureof 5
psf is exceeded.Thevaluesdecreaseasdynamicpressureis further increased.The
powerspectraldensitymethodandthetransferfunctionmethodyield similar trends.

Thefrequencyof thedynamicmodeis shownin Figure53. All methodsshowthesame
trend. Thestructuraldynamicfrequency,determinedfrom time historiesis49.5
radians/second,(7.9Hz). Thefrequencydecreasesasthedynamicpressureandthusthe
aerodynamiccouplingincrease.All resultslie on topof eachotherexceptfor the
analysesof thesinedwell data.Thesedatawereacquiredneardivergenceandhavesome
scatterin theresults.Regardlessof themethod,however,thefrequencyof thedynamic
modeisdeterminedto benot lowerthan20 radians/second(3.2Hz) at thedivergence
condition. Thedynamicmodeisclearlyshownto persistat anon-zerofrequencyat the
divergencecondition.
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Figure 53 Imaginary part of measured modal data as functions of dynamic pressure,

Configuration # 2

The subcritical modal data is also presented in a root locus format, Figure 54. The sine

dwell results have been removed from this chart for purposes of clarity. The four traces

shown, which are not individually identified, correspond to the pluck test results analyzed

using the logarithmic decrement technique, the real-time half power results and the two

interpretations of the frequency sweep data analyzed with the Fourier transform. All of

the traces begin in the neighborhood of the air-off value at -0.26 + j49.5 and migrate

generally downward and to the left as dynamic pressure increases.
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Configuration#1

Theexperimentaldatafor wind tunnelmodelconfiguration# 1is now presented.
Configuration# 1hasthe 1-inchdiametertorsionalspringandhastheTungstentrailing
edge. TheTungstentrailing edgeproducesa highertorsionalinertiathanfor theother
configurations.

Divergencetestingwasconductedexactlyasfor configuration#2. The zeroairspeed
angleof attackwassetascloseto zeroaspossible.Thedivergencedynamicpressure
was increasedslowly until theangleof attackincreaseddramaticallyandsuddenly,as
shownin thetime historyof Figure55. This wasdeclaredasthedivergencedynamic
pressure,5.14psf (246N/re'), which is nearlyidenticalto thedivergenceconditionfor
configuration#2. Basedonanalysis,thiswastheanticipatedresult.
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Figure 55 Divergence of wind tunnel model configuration #1

The subcritical methods of predicting divergence onset were each applied for this

configuration. The data are similar to that presented for configuration #2 and are omitted

here. The Southwell method was shown to be the most reliable prediction technique in

analyzing the data for configuration #2. For configuration #1, a divergence condition of
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5.i psfwasdetermined.Thispredictionrequiredthatdatabeknownup to 3.13psf, or
61%of thepredicteddivergencedynamicpressure.Usingdataat ahigherdynamic
pressurewasfoundto detractfrom theaccuracyof theprediction,asnonlineareffects
beganto influencethedata.

Thesubcriticalmodalcharacteristicsof thisconfigurationweredetermined,asfor the
previousconfiguration,asthedynamicpressurewasincreasedtowardsdivergence.The
resultsof thesetechniques,appliedto configuration#1, are summarized in Figures 56, 57

and 58. The damping and frequency information have been converted to the real and

imaginary assuming that they were representative of a single mode. Only two methods

were used to acquire and analyze the data for this configuration: the logarithmic

decrement technique and the half power method applied to frequency sweeps.

Figure 56 shows the real part as a function of dynamic pressure. As with configuration

#2, all data sets indicate that the damping, of the system is mainly due to the

aerodynamics. The logarithmic decrement results are shown in the figures by open

squares. The air off results show very low structural damping; for this configuration it

was measured as { = 0.0046, a very low value by comparison. The half power method

results are shown in the figures by solid diamonds. Both methods show the modal

damping increasing as the dynamic pressure increases for subcritical conditions below 4

psf. The measured damping tends towards zero near the divergence dynamic pressure.

This issue is further addressed in the discussion section of this paper.
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Figure 56 Real part of measured eigenvalues, Configuration # 1

The frequency of the dynamic mode is shown in Figure 57. The structural dynamic

frequency of the air off pitch mode was determined as 21.2 radians/second, (3.4 Hz). The

logarithmic decrement and half power method show the same trends for increasing

airspeed. The frequency decreases as the dynamic pressure and thus the aerodynamic

coupling increase. The frequency of the dynamic mode is determined to be not lower

than 7 radians/second ( 1.25 Hz) at the divergence condition. The dynamic mode is

clearly shown to persist at a non-zero frequency at the divergence condition.
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The subcritical modal data is also presented in a root locus format, Figure 58. The traces

shown correspond to the pluck test results analyzed using the logarithmic decrement

technique and the frequency sweep data analyzed with the Fourier transform. All of the

traces begin in the neighborhood of the air-off value at -0.1 + j21.2 and migrate generally

downward and to the left as dynamic pressure increases. Near divergence, they resemble

a left-to-right scribbling due to the uncertainty in determining the damping value.
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Configuration #3

The experimental data for wind tunnel model configuration # 3 is presented next.

Configuration # 3 has the 3,4-inch diameter torsional spring and has the Plexiglass trailing

edge. The inertial characteristics are identical to configuration #2. The torsional stiffness

has been changed. As previously mentioned, changing the torsional stiffness is not

anticipated to affect the dynamic characteristics of the system; in the anlaysis, the

eigenvalue migration pattern remains identical. Although the nondimensional root locus

remains the same, the dimensional natural frequency of the pitch mode increases as does

the dynamic pressure which produces divergence.

Divergence testing was conducted exactly as for configuration #2. The zero airspeed

angle of attack was set as close to zero as possible. The divergence dynamic pressure

was increased slowly until the angle of attack increased dramatically and suddenly, as

shown by the angle of attack time history, Figure 59. This was declared as the

divergence dynamic pressure, 15.2 psf (730 N/m2).
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Figure 59 Divergence of wind tunnel model configuration #3

The subcritical methods of predicting divergence onset were each applied for this

configuration. For this configuration, the Southwell method predicted a divergence

condition of 15.8 psf. Although the prediction is fairly close to the divergence dynamic

pressure observed directly, the nonlinear effects influenced this data more significantly

than the previous configurations. The linear appro×imation to the data, utilized in the

Southwell method, did not fit the data well. As the range of dynamic pressures included

in the data set analyzed increased, the predicted divergence dynamic pressure also
increased.

The subcritical modal characteristics of this configuration were determined, as for the

previous configurations, as the dynamic pressure was increased towards divergence. The

results of these techniques, applied to configuration #3, are summarized in Figures 60, 6 I

and 62. The damping and frequency information have been converted to the real and

imaginary assuming that they were representative of a single mode. The damping and

frequency traces presented are computed using the methods described pertaining to

configuration #2.

Figure 60 shows the real part as a function of dynamic pressure. As with configuration

#2, all data sets indicate that the damping of the system is mainly due to the
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aerodynamics.Thelogarithmicdecrementresultsareshownin thefiguresbyopen
squares.Theair off resultsshowvery low structuraldamping;for thisconfigurationit
wasmeasuredas_= 0.0035. Resultsfrom theothervariousmethodsareshownby the
symbolsindicatedin the legends.All methodsshowthemodaldampingincreasingasthe
dynamicpressureincreases.Additionally, thedatashowthatthedynamicmodeis stable
throughouttherangeof dynamicpressure,includingat thedivergencecondition.
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The measured frequency of the dynamic mode is shown in Figure 61. The structural

dynamic frequency of the air off pitch mode was determined as 87.15 radians/second,

( 13.9 Hz). All methods show the same trends for increasing airspeed. The frequency

decreases as the dynamic pressure and thus the aerodynamic coupling increase. At

divergence, the frequency of the dynamic mode is determined to be not lower than 36

radians/second (5.8 Hz) at the divergence condition. The dynamic mode is clearly shown

to persist at a non-zero frequency at the divergence condition.
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The subcritical modal data is also presented in a root locus format, Figure 62. All of the

traces begin in the neighborhood of the air-off pitch mode eigenvalue, -0.3 + j87.1, and

migrate generally downward and to the left as dynamic pressure increases. The trend

shown in this figure is for the dynamic mode damping to increase dramatically in the

neighborhood of the divergence dynamic pressure.

Hard Limit Instabilities

Time histories of each configuration at their respective divergence dynamic pressures

have been presented, Figures 40, 55, and 59. Each figure shows that divergence resulted

in the model sitting at an angle of attack where the airfoil has stalled. Data was acquired

for velocities beyond these divergence conditions until further destabilization resulted in

the model hitting the hard stops of the torsional spring. An example of this is shown for

configuration #2 in Figure 63; the angle of attack time histories is presented. Beginning

at 15.8 seconds into the time history, the character of the motion changes dramatically.

Destabilization, characterized by the onset of this dramatic motion, occurred at a dynamic

pressure of 5.59 psf (268 N/m2).
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Figure 63 Hard limit instability encountered as dynamic pressure is increased,

(Configuration #2)

A second example is shown in Figure 64; this data was acquired while the tunnel

condition is held constant at 5.53 psf. This data shown in both time histories indicates
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that the system destabilizes in a static sense, while dynamic motion persists.

Examination of the data using an expanded scale, Figure 65, shows the dynamic

oscillations of the torsional motion at 4.9 Hz as the system becomes statically unstable.
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Figure 64 Divergence encountered while at constant dynamic pressure
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The time histories presented above appear to have different character, despite the same

configuration being at approximately the same condition. The system behavior has to be

examined in the light of nonlinearities and regions of aerodynamic and structural loading

and unloading. Figure 66 addresses this issue. Shown in the figure are regions where

structural and aerodynamic nonlinearities affect the system. The torsional springs have

been shown to have limits on the linear behavior at approximately 18°. This deflection

limit is relative to the neutral position of the spring. Because the rigid angle of attack was

set by rotating both ends of the barrel spring, the neutral position is equivalent to the rigid

angle of attack, c_). All structural loading or unloading is relative to the neutral position

of the spring. The system also appears to be subject to an aerodynamic nonlinearity as

the flow separates and stall is encountered. Stall initiates at an angle substantially below
the structural limit; effects were observed as low as 8". The stalled airfoil stabilizes at

angles as high as 11 V2°. Aerodynamic loading or unloading is relative to the symmetric

position of the wing, 0 °. These regions determine and explain the behavior of the system
observed in the time histories.

18 o + (_t)

(X,stall

Angle °_o

of 0 °

Attack

--(_slall

-18 ° + (_o

Nonlinear stiffening spring (hard limit at 20 ° )

Stalled airfoil

....... ...................i....
| Loading . Aerodynamic / Range

T L°ading /of
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• Structural | Aerodynamic |System

Loading _, Loading _ Motion
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Stalled airfoil

Nonlinear stiffening spring (hard limit at -20 ° )

Figure 66 Regions of behavior for the airfoil

Consider the time history shown in Figure 55. Prior to the destabilization, shown to

begin at 15.7 seconds, the linear system has already diverged. Because the airfoil is

sitting at approximately 11 V2°, aerodynamic stall has effectively decreased the lift curve

slope; in a simplistic static sense, this can be thought of as a decrease in (negative)

aerodynamic stiffness. A decrease in negative aerodynamic stiffness is raises the

dynamic pressure at which the system destabilizes. Thus the nonlinear system appears
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stableat adynamicpressurewhich exceedsthelinearsystemdivergencecondition. At
15.7seconds,thesystempossessesenoughaerodynamicenergysuchthatthenonlinear
systembecomesunstable.Becausetheairfoil is stalledonlyasit oscillatesin one
direction(in this case,towardlargerangles),themotionis forcedtowardszero. As the
systemdestabilizes,theairfoil reentersthe linearaerodynamicrange. The airfoil has
enoughmomentumto approachzero,which is theaerodynamicallyandstructurally
unloadedposition,sincetheairfoil is at zerodegreesrigid angleof attack. The system is

nowat an unstable equilibrium point. Pursuant motion may be to either the positive or the

negative side. In the case of Figure 55, the linear range system diverges in the same

direction that it just came from. In the case of Figure 64, the system diverges in the

opposite direction. In the second case, the system may have been at a higher energy

level, the system possessing more momentum as it unloaded, overshooting the neutral

stability point and encouraging divergence in the opposite direction. In both of these

cases, when the system hits the nonlinear region again, sufficient energy has been added

to the system so that the hard stops of the torsional spring are hit; oscillations from one

stop to the other ensue.

Similar data is presented pertinent to configuration # 1. For this configuration, the onset

of the instability is gentler than that observed for configuration #2. Additionally, the

system does not hit the hard stops of the spring until after several oscillations from one

nonlinear range to the other.
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Figure 67 Nonlinear system divergence for configuration 1 at constant dynamic pressure

Results for configuration #3 are shown in Figure 68. This are particularly interesting data

because the nonlinear system is barely unstable and appears to damp slightly instead of

gaining energy with each oscillation. Prior to 15 seconds, the airfoil is sitting at 111/2°

angle of attack. The dynamic mode oscillations grow in amplitude, pushing the airfoil

deeper into the stall region. At 15.75 seconds, the system destabilizes in a static sense.

The angle of attack changes monotonically until the nonlinear aerodynamic region on the

negative side is encountered. The nonlinear system diverges again to the positive side

and then returns again to the negative side. Unlike in the previous cases, the system does

not have enough momentum to oscillate to the hard stops of the spring. Instead, the

motion damps slightly. By the second time the system hits the negative side, the

momentum is no longer sufficient to propel the airfoil through zero. As in the first case

discussed, it is now equally likely to diverge to either the positive or the negative side.

Returning to the negative side, the airfoil settles again at the stalled angle of 1 IV2°.
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until divergence condition

Dynamic mode characteristics at the instability condition

The time history data presented previously pertained to the system when the rigid angle

of attack was very close to zero degrees. The characteristics of the system at the

instability condition appear different when the airfoil is set at a substantial nonzero rigid

angle of attack. Data is presented in Figure 69 as the configuration #2 destabilizes at

three different rigid angles of attack.
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Configuration #2

The oscillatory behavior appears in the data more prominantly for the non-zero rigid

body angles of attack, 5 ° and 6 ° versus 0 °. It is important to note that setting the rigid

angle of attack at a non-zero angle causes the system to diverge at a lower dynamic

pressure. Each of the lines plotted in Figure 69 is for a different dynamic pressure. The

data at 5 ° angle of attack was acquired at a dynamic pressure of 3.13 psf. The modal

frequency is measured as 6.0 Hz. For the same dynamic pressure, the dynamic mode

frequency of the system at 0 ° was measured between 5.7 and 6.1 Hz, depending upon the

data reduction technique. The frequency of the system at instability for the 6 ° rigid

angle of attack is 6.2 Hz. The dynamic pressure is 2.55 psf. At a dynamic pressure of

2.55 psf, the 0 ° rigid angle of attack data yielded a frequency between 6.3 and 6.5 Hz.

The nonzero angle of attack data must be considered in light of the nonlinear regions

discussed above. There is additional complexity in the system because the structure's

equilibrium point is different than the aerodynamic stall equilibrium point. Consider the

above data for a rigid angle of attack of 5 °. The unstable behavior initiates at

approximately 0.5 seconds as the dynamic mode oscillations grow in magnitude. As time

progresses, the oscillations are shown to cross the zero angle of attack, without moving

into the nonlinear effects on the negative side, and then returning to the positive stalled
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side. This behavior exists due to the disparity in the structural and aerodynamic neutral

stability points. As the airfoil oscillates towards 5 ° , the system is unloading structurally

and aerodynamically. Once it passes 5 °, it is becoming structurally loaded such that the

torsional spring force acts to pull it back towards 5 ° . The aerodynamic forces are still

dissipating until the system oscillates beyond 0 °. This data set was acquired substantially

below the instability dynamic pressure of the system at 0 ° rigid angle of attack. The

structural restorative moment capability exceeds the aerodynamic moment imparted at

the low angles of attack. The system is therefore pulled towards the structural

equilibrium point, 5 +. The system oscillates back to the stall angle of attack as a larger

aerodynamic moment is produced by the airfoil at a now larger angle of attack.

Similar data is presented for configuration #1 and # 3 in Figure 71 and Figure 70,

respectively.
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Figure 70 Instability encountered for several values of rigid angle of attack, each at a different
dynamic pressure, Configuration #1
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Frequency ratios for the wind tunnel model configurations are compared in Table 13.

Config
#

COo(

(air

off)

0)D

(fD. Hz)

(OH

(at hard

instability

condition)

(fD. Hz)

maSSTrailingEdge

maSsTotal

fla. Hz)

1 21.4 8.9 0.42 15.7 0.74 0.56
(3.4) (1.42) (2.5)

2 49.5 22.0 0.44 30.8 0.62 0.01
(7.9) (3.5) (4.9)

3 88.0 45.2 0.51 56.5 0.64 0.01
(14.0) (7.2) (9.0)

Table 13 Frequency ratios of experimental data
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Discussion of Experimental Methods

Divergence Prediction Methods

Divergence onset determination using the load monitoring method requires that data be

acquired very near divergence. Interpretation of data taken well below divergence and

examined in this way does not easily yield the divergence condition. When using load

monitoring, it appears best to use a small, nearly zero rigid angle of attack. The load is

proportional to the elastic increment on angle of attack. This quantity is itself an

amplification of the rigid angle of attack. The amplification factor becomes very large,

theoretically goes to infinity, near divergence. As observed in the data for larger rigid

angles of attack, there is a steady, gradual rise in the moment. This is the effect of

applying an increasing dynamic pressure to a lifting surface at a non-zero angle of attack.

Modal Characteristics Determination Methods

Several methods were utilized to identify modal characteristics. It is not possible to

completely isolate a single aeroelastic mode's behavior in an experimental setting. Thus,

the measurements of the dynamic mode properties contain some content from the static

mode of the system.

The logarithmic decrement method is a simple way to calculate damping for systems

where the damping is low. The time histories produce consistent values in these cases,

where many cycles can be included inherently in the data processing. The air off data

presented is a good example of this situation. More highly damped systems, however

produce a limited number of oscillations. In the case of the plexiglass trailing edge

configurations, there were often only one or two cycles of decaying motion to analyze,

even at very low airspeeds.

It was difficult to extract information using the logarithmic decrement method in the

vicinity of divergence. Taking several data sets or using different segments of a time

history produced very different values of damping. The overall system response is a

combination of all of the system modes. Thus the time history's damping is not a modal

damping. Logarithmic decrement results can only be interpreted as modal damping if a

single mode is dominating the response. Near divergence, it is speculated that two modes

are contributing- a stable dynamic mode and a barely stable real mode. The calculated

damping could be the damping of one mode of the other, or more likely could indicate a
value in between them.

To utilize the logarithmic decrement technique, a disturbance must be applied to the

mode. As divergence is neared, the force with which a pluck is administered must be

reduced. Up to a certain dynamic pressure a very severe pluck can be used. This

produces more usable cycles of data. In these subcritical data sets, it is speculated that

the dominant damping effect is produced by the dynamic mode. Very near the
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divergence condition, it was difficult to pluck the model without destabilizing the system.

The dominant damping effect here is speculated to be that of the static mode of

aerodynamic origin which is very near instability.

The analysis of the logarithmic decrement data taken alone might lead one to consider

this a case of single degree of freedom flutter, where the dynamic mode destabilizes. The

additional data and analyses, however, do not support this interpretation.

An advantage to analyzing the data with frequency domain techniques is that the

transformation process sorts the information by frequency, separating the information by

mode. The damping and frequency information pertinent to one mode is distinct from the

others, as long as the modes are well separated. The main driver in testing configuration

3 was to raise the frequency of the dynamic mode at divergence so that the peak could be

fully distinguished. The modal frequency of configurations 1 and 2 was low enough near

divergence, that it is speculated that there could be substantial "leakage" from the static

information into the of the dynamic mode measurements.

The frequency domain techniques encountered difficulties near divergence. At velocities

well below divergence, a frequency sweep to the gust vanes provided the system with

sufficient excitation to give clean peaks in the frequency domain. There are several

issues to overcome in applying these methods near divergence. The first is how to impart

enough energy into the dynamic mode of the system. The frequency sweeps were

effective to a dynamic pressure that is very near the soft or linear divergence condition.

Above this, sine dwell excitations had to be employed.

In doing the sine dwells, the tunnel condition had to be maintained over along period of

time. Tunnel drift is thought to have produced a change in dynamic pressure, affecting

the consistence of a set of sine dwell data. Changes in the dynamic pressure affect not

only the amplitude of the response at a given frequency, but also shifts the modal

frequency. Inability to hold tunnel condition is thought to be partly responsible for the

data scatter associated with analysis of the sine dwell data.

An additional issue with the frequency domain results is extraction of the important

parameters from the plot. The faring of the line through the data is subjective and

becomes more crucial for highly damped systems.
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CHAPTER FOUR

COMPARISON OF ANALYSIS AND EXPERIMENT

The analytical and experimental results, previously presented in this paper, are compared

for each of the three wind tunnel model configurations. The subcritical eigenvalues of

the dynamic modes are compared, as welt as divergence conditions.

Configuration # 2, which is described in detail in Table 4, had the lower pitch stiffness

and the lower pitch inertia. This configuration is considered first. The imaginary part,

frequency, of the eigenvalue associated with the dynamic mode is plotted as a function of

dynamic pressure in Figure 72. Analytical results are indicated by the small "x's", while

experimental data are indicated by the larger symbols. Experimental data acquired using

different methods are represented by the different symbols. Five modes are shown from

the analysis. Two complex aerodynamic modes are shown; they originate at low

frequency and spring rapidly to a high frequency. They do not play a role in deterrnining

either the stability nor the subcritical characteristics of the dynamic mode of interest.

Two real modes that originate in the aerodynamic model are overpiotted on the real axis.

The mode which originates as the structural dynamic mode starts at the natural frequency

of the torsion mode, 49.5 rads/sec and migrates to a lower frequency as the aeroelastic

coupling comes into play. The analytical results and experimental data agree very well.

Both analysis and experiment indicate that the frequency of the dynamic mode is

substantially non-zero at the divergence condition. The divergence dynamic pressure

predicted by the analysis is 4.6 psf. The wind tunnel model diverged at 5. I psf and hit

the hard limit instability at 5.6 psf.
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Figure 72 Comparison of analytical and experimental results for configuration # 2, frequency of
system behavior as a function of dynamic pressure

The real part, indicative of the damping, of the dynamic mode eigenvalue is plotted as a

function of dynamic pressure in Figure 73. Five modes are shown from the analysis.

Two of the modes originate at zero and drop rapidly. These are complex aerodynamic

modes which become very highly damped. The mode which destabilizes is a real mode

which originated in the aerodynamic model. The mode which originates as the structural

dynamic mode starts near zero and monotonically decreases throughout the dynamic

pressure range presented. The fifth mode present from the analysis originated as the

second real aerodynamic eigenvalue. The subcritical trends in the experimental curves

follow the trend of the dynamic mode. Near divergence, between 4 and 5.6 psf, there is

substantial scatter in the experimental determination of damping. The damping values

generally lie between the analytical value for the dynamic mode and the stable

aerodynamic mode. While theexperiment and analysis are not in perfect quantitative

agreement, both indicate that the dynamic mode is stable at the divergence dynamic

pressure.
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The real and imaginary parts are combined in a root locus plot in Figure 74. For clarity,

the complex aerodynamic modes have been removed from the chart. As the reduced

velocity or dynamic pressure increases, the data progress generally downward and to the

left.
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The dynamic pressure and frequency results for configuration # 2 are summarized in

Table 14.

Analysis:
Air-off
characteristics

Divergence

Experiment:
Air-off
characteristics

Linear System

Diverg_ence
Hard Limit

Instability
Southwell method

results

Dynamic Pressure

(psf)

0

4.6

5.1

5.6

5.5

(rads/sec)

49.5

26.4

49.6

22.0

30.8

Frequency
(Hz)

7.9

4.2

7.9

3.5

4.9

Table 14 Comparison of analysis and experimental values for configuration # 2
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Configuration # 1 is considered next. Again, the analytical results and experimental data

agree well. In the vicinity of the divergence dynamic pressure, the experimental

frequency increases, departing from the analytically predicted frequency. Both analysis

and experiment indicate that the frequency of the dynamic mode is substantially non-zero

at the divergence condition. The divergence dynamic pressure predicted by the analysis

is 4.6 psf. The wind tunnel model diverged at 5.1 psf and hit the hard limit instability at

5.5 psf.
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Figure 75 Comparison of analytical and experimental results for configuration # 1,

imaginary pan as a function of dynamic pressure

The real part, indicative of the damping, of the dynamic mode eigenvalue is plotted as a

function of dynamic,pressure in Figure 76. For subcritical conditions below 4 psf the

shapes of the experimental data agree very well with the analytical dynamic mode. Near

divergence, between 4 and 5.6 psf, the measured damping values appear to follow the

real root of aerodynamic origin, which destabilizes.
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The real and imaginary parts are combined in a root locus plot in Figure 77. As the

reduced velocity or dynamic pressure increases, the data progress generally downward

and to the left.
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The dynamic pressure and frequency results for configuration # 1 are summarized in

Table 15.

Analysis:
Air-off

characteristics

Diver_.ence

Experiment:
Air-off
characteristics

Linear System

Divergence
Hard Limit

Instability
Southwell method
results

Dynamic Pressure

(psf)

4.6

5.1

5.5

5.1

(raddsec)

21.2

6.2

21.4

9.0

13.2

Frequency
(Hz)

3.4

1.0

3.4

1.4

2.1

Table 15 Comparison of analysis and experimental values for configuration # 1
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Configuration # 3 is now examined. The frequency results, shown in Figure 78

demonstrate the best agreement between theory and experiment of the three

configurations. The analytical results and experimental data lie on top of one another

throughout the dynamic pressure range, except right at divergence. In the vicinity of the

divergence dynamic pressure, there is a small amount of scatter in the measured

frequencies. The experimental values mainly fall slightly below the analytical

calculations. Both analysis and experiment indicate that the frequency of the dynamic

mode is approximately 45 radians/second (7.2 Hz) at the divergence condition. The

divergence dynamic pressure predicted by the analysis is 14.3 psf. The wind tunnel

model diverged at 15.2 psf and hit the hard limit instability at 16 psf.
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Figure 78 Comparison of analytical and experimental results for configuration # 3; frequency versus
dynamic pressure

The real part, indicative of the damping, of the dynamic mode eigenvalue is plotted as a

function of dynamic pressure in Figure 79. Three modes are shown from the analysis.

The mode which destabilizes is a real mode which originated in the aerodynamic model.

The mode which originates as the structural dynamic mode starts near zero and

monotonically decreases throughout the dynamic pressure range presented. The third

mode shown originated as the second real aerodynamic eigenvalue. The trends in the

experimental curves follow the trend of the dynamic mode. In the vicinity of divergence,

between 13 and 14.6 psf, the damping values could be interpreted as being representative

116



of anyof thethreemodesshownfrom theanalysis.Bothanlaysisandexperiment
indicatethat thedynamicmodeis stableatthedivergencedynamicpressure.
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Figure 79 Comparison of analytical and experimental results for configuration # 3; damping
characteristic versus dynamic pressure

The real and imaginary parts are combined in a root locus plot in Figure 80. For clarity,

the complex aerodynamic modes have been removed from the chart. As the reduced

velocity or dynamic pressure increases, the data progress generally downward and to the
left.

117



100 ...................; ....................: ....................,....................•...................................................................................i.....................'....................'
ix Analytical

90 • Frequency Sweeps ....".:....................i.....................:'..........._ ...................i....................i

• Frequency Sweeps2 i i _ i i
80 • Pluck Tests ...._....................!.............:Lll_:i ....................i....................i

® SineDwell i i? _•• .. i i
70 ¢r Half Ampl Excitation ............_ .......i ........................................

60 ....................................................................................................:ix ..................................................................................................
××l_ •

_ X .

m 50 P..................:.....................-...................=--..-_..--_,---+.-.-..-V......-.-..........@.....Y-................-:.............................................................

_E4ot-..................i....................i......*..........i...................-*-,:-...................i........................................i.............................................................4
L i !_ i i _ i i i i

3o..................i....................i........................................!....................i........:...........i....................i....................i.....................i....................i

0 ..................................................................................................................................................................................................................

10 ..................................................................................................................................................................................................................

-40 -35 -30 -25 -20 -15 -10 -5 0 5 10

Real Part

Figure 80 Comparison of analytical and experimental results for configuration # 3; root locus as

dynamic pressure is varied

The dynamic pressure and frequency results for configuration # 3 are summarized in
Table 16.

Dynamic Pressure

(ps_ (rads/sec)

Frequency
(Hz)

Analysis:
Air-off 0 87.3 13.9
characteristics

Divergence 14.3 46.5 7.4

Experiment:
0 88.0 14.0Air-off

characteristics
45.2 7.2

56.5 9.0
Linear divergence 15.2

16.0Hard instability

point
Southwell method 15.0

results

Table 16 Comparison of analysis and experimental values for configuration # 3
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CHAPTER FIVE

SUMMARY OF RESULTS

A eroelastic Analysis Results

Discrete time eigenanalyses of the aeroelastic systems revealed a static instability

originating in an aerodynamic mode and also the characteristics of a noncritical structural

dynamic mode for the aeroelastic systems examined. The analytical calculations of the

divergence dynamic pressure agreed exactly with those predicted by the static

equilibrium equations.

A database generated by varying the relevant nondimensional parameters revealed that

the variation of dynamic mode frequency and damping at the divergence condition was a

complex function of elastic axis position, radius of gyration and mass ratio. The

dependence on torsional mode frequency was shown to be merely one of scaling. The

parametric variations revealed that there are regions within the parameter space where

divergence occurs and the dynamic mode becomes a real mode. The predominant

category of behavior, however, for the family of configurations studied was shown to be

a persistence of the dynamic mode, originating from the structural dynamics, at a non-

zero frequency as the system diverges.

Additional insight into the modeling and physics associated with system behavior can be

gained by examining the eigenvectors. The aerodynamic eigenmodes contain the

essential information of the aerodynamic model. Two static aerodynamic modes exist

which resemble the static pressure distribution over the wing elements. The complex

aerodynamic modes are oscillatory wake modes, each at a constant frequency.

The dynamic mode eigenvector of the aeroelastic analysis yields information regarding

the stability of the system. The vorticity participation factors can be analyzed to produce

the modal frequency and damping. The degree of aeroelastic coupling is indicated by the

amount of vonicity in the wing portion of the vorticity distribution contained in the

eigenvectors. As velocity increases, the magnitude of the vorticities on the wing

increases up to a maximum at the divergence condition.

The static mode of the aeroelastic system that diverges resembles a pressure coefficient

distribution over the airfoil, similar to the real aerodynamic modes. All of the wake

vorticity lies in the last element at low velocities. As velocity increases, all of the wake

elements begin to participate in the mode. Near divergence, the participation of the last

wake element drops sharply. The sign of the vorticity on this element changes, becoming

out of phase with the airfoil vorticity and indicating a change in stability of the mode.
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The modalvorticity ratios indicatetherelativeparticipationof theaerodynamicsand
structurein eachmode. Subcritically,thetraditionaldivergentconfigurationshave
dynamicmodeswhichcontaina largedegreeof aerodynamicparticipation.By contrast,
theconfigurationsstudiedherethatdivergebutalsohaveapersistentnon-zerofrequency
dynamicmodehavemodalvorticity ratiosthatreflect relativelylow participationof the
aerodynamicsin thatmode.

Eigenvectororthogonalitystudiesshowedthatthephysicalmismatchin eigenvector
quantitiesrequiresthateachportion'sorthogonalitybeconsideredseparately.Thewake
vorticity portion of thedynamicaeroelasticmodeeigenvectorbehaveasif the
aerodynamicsarebeingforcedatthemodalfrequency.Oscillationsin thewake
vorticitiesshowupstronglyin theeigenvectorphasingif all componentsof the
eigenvectorareusedin thecomparison.Thevorticity on thewingandthestructural
dynamicsconsideredseparatelybothshowedthatnearzeroflow velocity,thedynamic
modeis nearlyorthogonalto therealaerodynamic-originatedmodes.Thisreinforcesthe
ideathatthereis nocouplingbetweenthestructureandtheaerodynamicsuntil thesystem
is subjectedto asubstantialflow velocity. Thisorthogonalityisquickly lostasthe
airspeedis increased.As thevelocityapproachesdivergence,theanglebetweenthe
dynamicmodeandtheunstablemodechanges.Themodesstartto losetheir
orthogonality,allowing energytransferencebetweenthemodes.

Experimental Results

All three experimental configurations diverged in the wind tunnel. The divergence

dynamic pressure for configurations 1 and 2 was predicted by analysis to be identical and

was measured to be nearly the same. The physical difference between these two

configurations was that the first had the Tungsten trailing edge sections, while the second

had the Plexiglass trailing edge. Classical steady divergence analysis and the analysis

presented in this study indicate that the divergence dynamic pressure is independent of

the inertial characteristics of the system. The experimental data agrees with this

conclusion. Instability of each system was encountered at a slightly higher dynamic

pressure than the linear theory predicted for divergence.

The three configurations tested all show the continued presence of the structural dynamic

originated mode at non-zero frequency when the system becomes statically unstable.

This was indicated by the time histories as well as frequency domain analysis.

The three configurations can be compared in terms of the instability onset. The onset of

instability becomes more sudden and violent for typical sections with low inertias. This

was experienced in the testing and can be observed by comparing time histories of

destabilization, as well as by examining the divergence onset prediction results. For the

120



first configuration,with largetorsionalinertiaprovidedby theTungstentrailing edge,a
gentleonsetwasencountered.

Thedestabilizingdataat nonzerorigid anglesof attackprovidecompellingevidencethat
thebehaviorof thedynamicmodeis not astrongfunctionof thestaticstability of the
system.Thefrequencyof themotionasthesystemdestabilizesis closeto thefrequency
thatthemodepossessesatzeroangleof attacklor thesamedynamicpressure.

Datawasalsoacquiredfor testconditionsinexcessof thelinearsystemdivergence
dynamicpressure.At anangleof attack,between8° and 11g2°, the airfoil reached

aerodynamic stall. An effect of stalling the airfoil was a reduction of the effective

aerodynamic moment; dramatic yet understandable nonlinear behavior was thereby

produced.
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CHAPTER SIX

CONCLUSIONS & SUGGESTED FUTURE WORK

The analyses and experiment presented show that aeroelastic divergence can occur

without a structural dynamic mode losing its oscillatory nature and becoming static. The

aeroelastic coupling of the static aerodynamic and structural properties that produces

divergence does not require the dynamic system behavior to cease. Aeroelastic changes

in the dynamic mode behavior are governed not only by the stiffness, but by damping and

inertial properties.

Typical section analysis and wind tunnel experiments demonstrated divergence,
destabilization in a static sense, but at the same time demonstrated that a dynamic mode

was still present in the system. These analytical and experimental results challenge the

basic assumption that divergence occurs as a structural dynamic mode becomes static. It

has been demonstrated that utilizing dynamic mode tracking to predict divergence onset

experimentally is inadvisable. The combined aerodynamic and structural stiffness is

shown to go to zero, but the dynamic mode frequency is shown to not necessarily

disappear as the divergence condition is reached.

From this simple analysis and experiment, many possibilities open up for future research.

In this work, a typical section with a single pitch structural freedom was employed.

Suggested future investigations include extending the structural degrees of freedom to

include the plunge mode. Inclusion of the plunge mode could simulate inclusion of rigid

body or fuselage plunge motion. Study of a wing configuration would be a logical and

useful extension also.

The nonlinear behavior which was observed in the present experiment also provides an

opportunity for follow-on work. A more rigorous investigation of the behavior from a

phase plane and energy level standpoint might offer interesting results. Additionally, a

theoretical investigation of the stall behavior is suggested, perhaps utilizing the ONERA

aerodynamic stall model I .

The analytical method of utilizing a discrete time aerodynamic model could potentially
be extended to include doublet lattice aerodynamics. As a workhorse in the aeroelastic

community, an analysis using doublet lattice in this fashion would provide direct

comparison with current common analysis practices. Insight into the differences between

roots produced by eigenanalysis and Pade approximation could be gained.

Experimentally, a simple extension of this work would be to make incremental changes

in inertial properties in order to produce configurations where traditional divergence

i Tang, D. M., and E. H. Dowell, Comments on the ONERA Stall Aerodynamic Model and its Impact on
Aeroelastic Stability
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occurs. The current model would require relocation of the axis of rotation closer to the

center of pressure and addition of mass, external to the airflow.

Acquisition and processing of unsteady pressure data offers additional research

opportunities. The analytically determined eigenvector study has offered some insight

into the phase relationship between the structural displacement and velocity and the

vorticity distribution. The vorticity or pressure distribution, measured in an experiment,

could provide additional insights. Potentially, pressure data could be examined and

proper orthogonal decomposition techniques applied to examine aerodynamic modal

participation in overall system response.
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APPENDIX A

EQUATIONS OF MOTION

NOMENCLATURE

Aerodynamic matrix

Distance from midchord to elastic axis

Aerodynamic matrix
Semi-chord

Aeroelastic force matrix

Intermediate calculation matrix, defined in equation 46

Intermediate calculation vector, defined in equation 47

Pitch mode damping

Structural dynamic matrix
Downwash matrix

Elastic axis position, measured positive aft from the center of

pressure

Aerodynamic load vector

Integral expression, see equation 40
Torsional inertia

Intermediate structural dynamic matrix, defined in equation 54

Intermediate structural dynamic matrix, defined in equation 54

Number of aerodynamic elements on the wing
Mass

Total number of aerodynamic elements

Time step number
Generalized structural coordinates

Dynamic pressure

Radius of gyration

Intermediate calculation vector, defined in equation 44

Intermediate calculation vector, defined in equation 45

Velocity

Reduced velocity, (V=U/0_b)

Downwash

Vector of locations of vortices in the aerodynamic model; chord-
wise location

Discrete time eigenvalue

Time step size, temporal discretization

Aerodynamic element size, spatial discretization

Vorticity vector

Aerodynamic kernel Iunction
Torsional stiffness
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M

O_

k

P

Moment

Aerodynamic relaxation factor

Angle of attack

Continuous time eigenvalue

Mass ratio

Density of air

Frequency of torsional mode (radians/second)

Vector of locations of collocation points in the aerodynamic model

Damping

time step number

Superscripts

O0

0

1

a

EA

i,j

k

M

wake

wing

Subscripts

Pertaining to the torsional degree of freedom

Freestream

Steady quantity

Unsteady quantity

Airfoil motion quantity

Quantity at the elastic axis

Designation for an element of a matrix which lies in the ith row,

jth column

kth aerodynamic element

The Mth aerodynamic element

Quantity in the wake

Quantity on the wing

Aerodynamic equations

The aerodynamic model was constructed by considering time-marching relationships as

the vorticity develops on the wing and in the wake. For this study, the airfoil is modeled

as a 2-dimensional fiat plate. The airfoil and the wake are divided into segments, referred

to as aerodynamic elements.

The vortex lattice aerodynamics are generated by placing vortices of strengths to be

determined at points on the airfoil and in the wake. Control points, usually located aft of

the vortex locations, are points where the boundary conditions must be satisfied. Typical

placement is for the vortices to be located at the _A-chord point of an aerodynamic

element. The control points are typically placed at the 3A-chord locations of the elements.
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Thereare3 basicrelationshipscontainedin thevortex latticeequations,detailedin the
following paragraphs,whicharecombinedto form amatrix equation.

Thevelocity inducedby thediscretevorticesis setequalto thedownwashcausedby the
airfoil's motion,Equation24.

N

wn+l : E xijr] +l Equation 24
j=l

i= 1..... M

The kernel function, Kij, relates the vorticity at point j, l-'j, to the downwash generated at

point i, wi. For an isolated flat-plate airfoil in two-dimensional incompressible flow is

given in Equation 25.

Equation 25

Applying Kelvin's theorem generates the second basic relationship. Quoting Hall _

"unsteady vorticity is shed into the wake; its strength is proportional to the time rate of

change of circulation about the airfoil. If the time step is taken to be equal to the time it

takes the vorticity to convect from one vortex station to the next, then the strength of the

first vortex point in the wake at the time n+l is given by (Equation 26)"

M + I = - - Equation 26

j=l

Once the vorticity has been shed into the wake, it is convected in the wake at the

freestream velocity. Convection provides the final relationship utilized in constructing

the aerodynamic equations. Fixing the time step such that At = U Ax, this convection is

described by Equation 27.

F n + 1 = i _ n Equation 27l-1£

,i = (M + 2),(N - 1)

Because the wake is modeled with a finite length, the convection relationship for last

vortex element must be treated specifically. "Otherwise, the starting vortex would

disappear abruptly when it reached the end of the computational wake, producing a

J Hall, Kenneth C., Eigenanalysis of Unsteady Flows about Ai_bils, Cascades attd Wing
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discontinuouschangein the inducedwashat theairfoil• To alleviatethisdifficulty .... the
vorticity is allowedto dissipatesmoothlyby usinga relationfactor,(Equation28).'"

F/n+l = Fin_l +

,i=N

Equation 28

The equations are combined into the matrix expression, Equation 29. The Kernel

function relationship between the vorticities on the wing and wake and downwashes on

the wing form the first M rows of the equations. Kelvin's theorem is seen as the (M+I)

row. Convection in the wake appears in rows M+I through N.

KII KI2 ... KIM KI(M + I) KI(M + 2) ...... KIN

K21 K22 ... K2M K2(M + I) K2(M + 2) ...... K2N

KMI KM2 KMM KM(M + 1) KM{M + 2) ...... KMN

I I ... i I 0 0 0 0

0 0 ... 0 0 I 0 0 0

..... ". ".• "

....... • . I 0

0 0 0 0 0 0 ... 0 l

0 ...... 0 0 0 ...... 0

0 ...... 0 0 0 ...... 0

0 0 0 0 0 0 0 0 0

-I ....... 1 0 0 ...... 0

0 ...... 0 -1 0 0 0 0

.... 0 -1 "'. "'. "

...... • . "'. 0 0

0 ...... 0 0 ... 0 -i -t_

_wing (x l )

_/wing(x 2)

_wing(xM)

_wake(XM + 1)

_wake(XM + 2)

>ake(xN)

" [w{x,)

w(x2)

[w(xM)
=J 0

0

0

_¢ing(Xl )

_wing(x2)

_4ving(xM )

>ake(xU+I)
_wake(XM + 2)

_wake(XN )

n+l

n+l

+

Equation 29

Rewriting Equation 29 in general terms produces Equation 30.
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[A ]{F }11+1 + [e ]{I-'}n = {w }n+1 Equation 30

Aerodynamic moment equations

The moment about the elastic axis generated by the aerodynamics is calculated using the

integral expression in Equation 31. The distribution of vortex strength per unit length in

the chord-wise direction is specified as y(_). The distance from the elastic axis to the

mid-chord of the typical section, measured negative aft, is specified as ab.

gEA(t)=IbbP(X-abIUy(x,t)+_IXby(_,t)d_ Equation 31

The moment equation is spatially discretized; approximations to the spatial integrals are

made. In doing so, the vorticity, _k), of each aerodynamic element is used. The

moment arm for the force generated by each element's vorticity is the distance from the
vortex location to the elastic axis.

The integral is broken apart into the steady and unsteady portions, denoted M0 and MI,

respectively as shown in Equation 32 and Equation 33.

M 0 (t) = Sb_bp (x - ab)U y(x, t)dx Equation
32

gl(t)=IbbP(X-abldlXby(_,t)d_ldx Equation33

The moment at a given time, (n+l/2)At, is the sum of the steady and unsteady parts at that

time, Equation 34.

M EA ((n + 1/2)_ )= Mo ((n + I/2)_t)+ Ml((n + 1_2)_t ) Equation34

It is desired to express the moment in terms of the vortex strength distribution at integer

time steps. Before proceeding, the notational convention exhibited in Equation 35 is

introduced. The superscript represents the time step and the subscript represents the

spatial element location.

Y_k , (n + 1/2)5t)= y_+ _ Equation 35

The vortex strength at a location on the wing is then approximated at time (n + V2 )At as

the average of the value for the preceding and following time steps, Equation 36.
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y(X_+)/2_ _'(Xr + _(XY '+l Equation36
2

The steady portion of the moment is approximated using a weighted summation of the

vortex strength distribution on the airfoil as shown in Equation 37. The vortex

associated with the k'h aerodynamic element is located at _k • This is the location relative

to the midchord and ab is the distance from the midchord to the elastic axis. Note that the

control or downwash point of each aerodynamic element, Xk, is located half an element

aft of the vortex location, Xk= _k + 1/2Ax. The moment arm for each vortex utilizes the

vortex location. The moment computation, however, is evaluated for the downwash

locations. This seeming incompatibility is necessitated by the equations to which the

moment expression is coupled in forming the governing aeroelastic system equations.

M
MOn + _ =-UpAx _ (_k -:-ab )yJk' Equation 37

k=l

The summation is implemented as a vector product as shown in Equation 38.

Al n+_
,, - = -ab ) (_2 -ab ) "" (_M -ab ).__'wi,ig Equation 38

The unsteady portion of the moment equation, Equation 39, is next evaluated at the time

under consideration. In addition to the vortex strengths varying with time, there is a

derivative expression which must be considered.

Ml+_=_bbP(X_ab{dlXby(<)d_}n+i_-2dx Equation39

The internal integral at time n, evaluated at the downwash point of the k th aerodynamic

element is represented as Ikn. The integral takes on a different value for each

aerodynamic element, as the upper limit of integration is the chord-wise location of the

control point for a given element. The integral expression can be approximated as a

summation of contributions from each aerodynamic element, as shown in Equation 40.

The contribution from each element is the elemental vortex strength multiplied by the

length of the element which is upstream of the downwash point under consideration.

That is, if an element is ahead of the element under consideration, its entire length is

utilized in the calculation. If an element is behind the element under consideration, none

of its strength is used in the calculation, so it is multiplied by zero. Three-fourths of the

element being considered lies upstream of the downwash point, so 3A of that element's

length is utilized in the summation. The summation is also presented in the form of a

matrix multiplication suitable for implementation.
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]ff=fx_y(_)d_- 3_4AX_k +Ax _ _,'y =Ax (I,k-l} _4 0(1,M-k) wing_
j=l

Equation 40

The time derivative of the integral expression is approximated using the central

difference theorem, Equation 41.

(d[ I n+l/_2 _(Alln+l/_2 I n+l -I n- Equation 41

The unsteady portion of the moment is approximated by a double summation, Equation

42, where one of the summations is included in the evaluation of the integral expression.

gl+g= pax 2 (_k -ab ; At Equation42

k=l j

This can be written as a matrix product, Equation 43.

°o '

Equation 43

Implementing the calculations for the steady and unsteady moments can be combined

utilizing the following matrix products, Equation 44 through Equation 47.

t l = P h(_l - ab) (_2 - ab) ... (_M - ab)J Equation 44

IX 0 _]t2=pk(_l-ab) (_2-ab)..-(_M-ab)tZ Y4'"..."""1 Equation45

Zero padding is required to make the dimensions such that the matrices fit into the

aeroelastic system equations.
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Uoo I 0(l'Ne) 0(I'N> 1

C I - mb 2 L(tl-t2) 0(1,N-M)

Equation 46

- v= o<,N>1
mb 2 [(tl +t2) 0(I.N-M)J

EquaHon 47

The dimensions of the coupling equations necessitate the formation of a vector

expression where the aerodynamic moment equation is the second row.

EquaHon48

A vector containing all of the vortex strengths is defined in Equation 49.

[  ake Lr r I

Equation 49

The general form of the aerodynamic moment equation is then shown in Equation 50. It

is noted again that the first row is a zero element and only the wing elements of the

vorticity distribution are utilized in computing the aerodynamic moment.

)n+_ = C2i-,n+l +Cll-.n Equation 50

Structural Dynamic Equations

The equations of motion for a typical section with a single pitch degree of freedom,

possessing inertia, damping and stiffness characteristics, and subjected to an aerodynamic

moment are given in Equation 51.

Io,{_ }+ Cot {_ }+ K a {t;t }= My Equation 51

To write the equation in terms of nondimensional quantities, Equation 51 is divided by

mass and semi-chord squared.
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a///m _ 2 M y//_mbra_}+ Ca {O}+ r_, cooc{a}=
b 2 2

Equation 52 can be rewritten as a set of first order equations.

Equation 52

I: r_01{_}+Lro_O)o_I20 2 Ca/m_/b2-1 £{_} { .y_m } {00}_ My b 2 :

The above matrices and vectors are redefined in Equation 54.

Equation 53

[J2 ]{g }+ [JI ]{g} + {f }: {0} Equation 54

The time derivative of the generalized structural coordinate at a given time, (n+ 1/2)At,

can be expressed approximately using the central difference theorem, Equation 55.

dqln+l/_ 2 {__}n+ I/_2 {q}n+l _ {g}n Equation55dtj = :

The generalized structural coordinate can be approximately using the central difference
theorem.

{q}n+ I/_2 ____i/2 ({g}n+l +._/}n) Equation56

The first order equations can be written for a specific instant in time. Writing them at

time (n+ I/2 )At and employing the central difference approximations shown in Equations

55 and 56 leads to Equation 57.

Tj
Equation 57

This is now in the general form represented in the main text of the paper.

D2qn+l + Dlqn + fn+l = 0 Equation 58

Downwash Equations

The downwash is defined as the vertical component of velocity on the airfoil, w._, positive

downward. Using the velocity potential function, _, the downwash can be expressed in
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terms of temporal and spatial derivatives. The vertical displacement, z, is defined as

positive upward.

_ _Za U_ _za Equation 59

Wa - OZ Ot Ox

The vertical motion of the airfoil, z_, is a function of both spatial coordinate, x, and time,

t. The motion can be represented in terms of a spatial mode shape, _(x), and a temporal

generalized coordinate, ¢(t).

Z a (x,t)= O(X)_ (t) Equation 60

The downwash expression can then be written as Equation 61, where the negative signs

have been incorporated into the mode shapes.

Wa = _( x )____(t ) + U_ ) "_(x--_(t ) Equation 61

Ox(1I

The generalized coordinates and their derivatives with respect to time can be written as a

single vector.

_(t)

t---SJ

The downwash equation can be written in first order form.

Equation 62

Wa : [ U°°d_p(x)dx ¢_(X)]_} Equation63

Specifically, for the pitch degree of freedom, the vertical displacement of a typical

section is given in Equation 64. The displacement at a point on the airfoil is a function of

its location, x, measured relative to the center of rotation. The sign convention utilized is

positive distance is forward of the center of rotation and angle of attack is positive nose-

up.

Z a : --X¢2 Equation 64

O( X ) = -X Equation 65
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_( t ) = 0 Equation 66

The downwash equation, written for a single point on the wing, in general lbrm is given

in Equation 67.

Wa = [- Uoo - X_g7} Equation 67

Formally, the generalized coordinate vector is comprised of the structural generalized

coordinate and its first derivative with respect to time. For the case of the pitch only

typical section the generalized coordinate is the angle of attack.

The downwash equations can be written in the general form presented in the main text.

W n = Eq n Equation 69
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APPENDIX B

EIGENVECTOR INVARIANCE UNDER TRANSFORMATION

NOMENCLATURE

State matrix

A general matrix
Jordan form matrix

Matrix which is similar to B

A general matrix
Transformation matrix

Laplace variable
Time

Time step size

Laplace domain representation of state variable vector
Vector of state variables

Substitution variable for state vector, see equation 89

Unit delay operator, discrete time eigenvalue
State transition matrix

Eigenvalues of B matrix

Continuous time eigenvalue

Eigenvector

A,B, C, F

C

d
AT

e

SUBCRIPTS

Pertaining to matrix A, B, C, or F

Continuous time quantity

Discrete time quantity
AT

Pertaining to discrete time matrix, e

Theorem: The eigenvectors for the associated continuous and discrete time state space

systems are equal.

Proof.

• Let the continuous time state space equations for the unforced system be given by

Equation 70.

._'(t)= Ax(t ) Equation 70
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A solution can be obtained by utilizing the Laplace transform, Equation 71, where X(0) is

the state of the system at the initial condition.

sX(s) - X(O) = AX(s)

The system of equations can be rearranged as in Equation 72.

Equation 71

X(s) : [Is - A] -I X(O)

Define the state transition matrix at a time t,_(t), as in Equation 73.

Equation 72

_Pc(t)=U I -A] -I l+At+lAt 2 + =--At3+.-.
2! 3!

Rewriting in summation notation produces Equation 74.

Akt k _ e At_c (t) =
k=0 k!

Equation 73

Equation 74

x(t) = _c (t)x(0)

A non-zero initial time can be accommodated in these equations,

Equation 75

x(t) = Oc (t - t o )x(t o ) Equation 76

oo

_c(t-to) = _ Ak(t-to)k

k=O k!
Equation 77

• To obtain the discrete time model with a time step size of T seconds, Equation 77

can be evaluated at time t=nT + T, with to = nT.

x(nT + T)=_c(nT + T-nT)x(nT) Equation 78
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x((n + 1)T ) = tOc (T)x(nT) Equation 79

In discrete time notation, the time step size is generally omitted.

x[n + l]=_c(T)x[n] EquaHonSO

The discrete time state space equations for the unforced system are given by Equation 81.

x(n + 1): AdX(n) Equation 81

Comparing Equation 80 Equation 81, the continuous and discrete time system matrices

are related as in Equation 82.

oo __Tk A k
Ad =eAT :_Pc (T): Y. k] Equation82

k=O

The discrete time equations can thus be written as Equation 83.

x(n + l)=eAT x(n) Equation 83

• For the continuous time relationship, assume the time variation to be simple

harmonic motion, Equation 84.

x(t )= e At x(O)=eAt _A Equation84

An eigenvalue problem is formulated by substitution of the simple harmonic solution into

the state space equations, Equation 85.

A _ a = _A/_ Equation 85

• For the discrete time relationships, approximate the time variation as a unit delay,

Equation 86. The response of the system as an initial time is given a new notation.

x(n) =znx(o) n: Z _eAT Equation 86

An eigenvalue problem is formulated by substitution of the unit delay solution into the

discrete time state space equations. Equation 87.

e AT_eAT = Z_eAT Equation 87

• Thus the theorem can be restated as the eigenvectors of A, denoted _,_, are equal

to the eigenvectors of Ad, denoted _e AT.
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Following the development of Kincaid and Cheney I, "if we possess the Jordan form C of

A and we know the transformation (given in Equation 88), then we can change variables

by substitution as in (Equation 89)."

_ A Ia _ a = C Equation 88

X = _ A Y Equation 89

The differential equation, Equation 70, and the prescribed initial condition, x(0), can be

recast as Equation 90 and Equation 91.

CA Y -- A CA Y Equation 90

_AY(O): x(O) Equation91

Rearranging Equation 90 produces Equation 92.

) = _A I A _A Y Equation 92

Substituting the Jordan form matrix, C, from Equation 88 produces Equation 93.

= Cy Equation 93

This set of equations can then be solved, Equation 94.

y(t ): e CT y(O) Equation 94

Substituting this solution into Equation 89 and reverting to the original state vector

produces Equation 95.

x(t):_ae CT _A Ix(O) Equation 95

Comparing Equation 95 with Equation 75 leads to the expression of the matrix

exponential in terms of the Jordan form matrix exponential, Equation 96.

e A T = _a e CT _A I Equation 96

i Kincaid, David, and Ward Cheney, Numerical Analysis: Mathematics of Scientific Computing, page 562
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Theeigenvectorsof ageneralmatrix, B, canbeobtainedfromtheeigenvectorsof any
similarmatrix,F, if thetransformationbetweenthetwo matricesis known. The
transformationrelationshipis defined,Equation97bythematrixR.

R- 1FR = B Equation 97

The eigenvalues of a matrix are invariant with coordinate transformation. The

eigenvalues of both matrices F and B are denoted [3 in this development. The

eigenvectors are denoted _,. The eigenvalue problem for B is given by Equation 98.

B _ B : _ B _ Equation 98

Substituting Equation 97 and premultiplying by R results in Equation 100.

R-I FR_B = _B fl Equation 99

Examining this equation, it is recognized that this is an eigenvalue equation for the matrix

F, where the eigenvectors are shown to be RCB.

F(R_B ): (R_B)/_ Equation 100

_F : R_B Equation 101

The preceding derivation is now applied to Equation 96, making the following
substitutions.

R = _A I Equation 102

F = e CT Equation 103

B = e A T Equation 104

This results in an expression for the discrete time system matrix in terms of the Jordan

form system matrix and the continuous time eigenvectors, Equation 105, and a

relationship among the eigenvectors, Equation 106.

eAT = _A 1 _1 e CT _A I
Equation 105
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_eCr = _A] _pAT Equation 106

C is the Jordan form matrix associated with A, the continuous time system matrix. The

formula for taking the exponential of a general matrix, P is given in Equation 107.

oo __Tk pk
e PT = _ k! Equation 107

k=O

If P is a matrix of diagonal elements, the pk is a matrix of each element to the k th
Thus for P diagonal, evr is diagonal and of the same matrix dimension. Thus, eclp°wer'isa

Jordan form matrix. The case of the non-diagonal Jordan matrix has been left to the truly

inspired reader.

The eigenvectors of a Jordan form matrix form an identity matrix.

_eCT = I

Using this relationship and Equation 106 leads to Equation 109.

-I
I = _A _e AT

EquaKon 108

Equation 109

Therefore, the eigenvectors associated with the continuous and discrete time state space

equations are equal, Equation 110.

_A = _e AT Equation 110
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